Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# ---- Imports ----
|
2 |
import logging
|
3 |
import random
|
4 |
import warnings
|
@@ -7,9 +6,9 @@ import io
|
|
7 |
import base64
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
-
import spaces
|
11 |
import torch
|
12 |
-
# --- Add this if
|
13 |
# import torch._dynamo
|
14 |
from diffusers import FluxControlNetModel
|
15 |
from diffusers.pipelines import FluxControlNetPipeline
|
@@ -18,7 +17,6 @@ from PIL import Image, ImageOps
|
|
18 |
from huggingface_hub import snapshot_download
|
19 |
|
20 |
# --- Setup Logging and Device ---
|
21 |
-
# ... (rest of setup code remains the same) ...
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
warnings.filterwarnings("ignore")
|
24 |
|
@@ -28,9 +26,13 @@ css = """
|
|
28 |
"""
|
29 |
|
30 |
if torch.cuda.is_available():
|
31 |
-
power_device = "GPU"
|
|
|
|
|
32 |
else:
|
33 |
-
power_device = "CPU"
|
|
|
|
|
34 |
logging.info(f"Selected device: {device} | Data type: {torch_dtype}")
|
35 |
|
36 |
# --- Authentication and Model Download ---
|
@@ -41,25 +43,36 @@ local_model_dir = flux_model_id.split('/')[-1]
|
|
41 |
pipe = None
|
42 |
|
43 |
try:
|
44 |
-
# ... (model download code remains the same) ...
|
45 |
logging.info(f"Downloading base model: {flux_model_id}")
|
46 |
-
model_path = snapshot_download(
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
logging.info(f"Base model downloaded/verified in: {model_path}")
|
48 |
|
49 |
logging.info(f"Loading ControlNet model: {controlnet_model_id}")
|
50 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
|
|
|
|
51 |
logging.info("ControlNet model loaded.")
|
52 |
|
53 |
logging.info("Loading FluxControlNetPipeline...")
|
54 |
-
pipe = FluxControlNetPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
55 |
pipe.to(device)
|
56 |
logging.info("Pipeline loaded and moved to device.")
|
57 |
|
58 |
# --- OPTIMIZATION: Attempt torch.compile (PyTorch 2.0+) ---
|
59 |
if device == "cuda" and hasattr(torch, "compile"):
|
60 |
-
# ---
|
61 |
compile_mode = "default"
|
62 |
-
# --- Alternative (Solution 2): Uncomment these lines ---
|
63 |
# import torch._dynamo
|
64 |
# torch._dynamo.config.suppress_errors = True
|
65 |
# compile_mode = "max-autotune" # or "default" even with suppress_errors
|
@@ -69,261 +82,403 @@ try:
|
|
69 |
try:
|
70 |
pipe.transformer = torch.compile(pipe.transformer, mode=compile_mode, fullgraph=True)
|
71 |
logging.info("Pipeline transformer compiled successfully.")
|
72 |
-
# Optional dummy inference run can go here
|
73 |
except Exception as e:
|
74 |
logging.warning(f"torch.compile failed (mode='{compile_mode}'): {e}. Running unoptimized.")
|
75 |
-
# --- Solution 3: If compilation fails consistently, comment out the compile line above ---
|
76 |
# pipe.transformer = torch.compile(pipe.transformer, mode=compile_mode, fullgraph=True) # <-- Comment this out
|
77 |
else:
|
78 |
logging.info("torch.compile not available or not on CUDA, skipping compilation.")
|
79 |
|
80 |
-
# --- (Optional xformers code
|
81 |
|
82 |
logging.info("Pipeline ready for inference.")
|
83 |
|
84 |
except Exception as e:
|
|
|
85 |
logging.error(f"FATAL: Error during model loading or setup: {e}", exc_info=True)
|
|
|
86 |
print(f"FATAL ERROR DURING MODEL LOAD/SETUP: {e}")
|
|
|
87 |
raise SystemExit(f"Model loading/setup failed: {e}")
|
88 |
|
89 |
-
|
90 |
# --- Constants ---
|
91 |
MAX_SEED = 2**32 - 1
|
92 |
-
MAX_PIXEL_BUDGET = 1280 * 1280
|
93 |
-
INTERNAL_PROCESSING_FACTOR = 4
|
94 |
|
95 |
# --- Image Processing Function (process_input) ---
|
96 |
-
# ... (process_input function remains the same) ...
|
97 |
def process_input(input_image):
|
98 |
-
|
|
|
|
|
99 |
try:
|
|
|
100 |
input_image = ImageOps.exif_transpose(input_image)
|
101 |
-
|
|
|
|
|
|
|
102 |
w, h = input_image.size
|
103 |
-
except AttributeError:
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
w_original, h_original = w, h
|
107 |
-
if w == 0 or h == 0:
|
|
|
108 |
|
|
|
109 |
target_w_internal = w * INTERNAL_PROCESSING_FACTOR
|
110 |
target_h_internal = h * INTERNAL_PROCESSING_FACTOR
|
111 |
target_pixels_internal = target_w_internal * target_h_internal
|
|
|
112 |
was_resized = False
|
113 |
-
input_image_to_process = input_image.copy()
|
114 |
|
|
|
115 |
if target_pixels_internal > MAX_PIXEL_BUDGET:
|
|
|
116 |
max_input_pixels = MAX_PIXEL_BUDGET / (INTERNAL_PROCESSING_FACTOR**2)
|
117 |
current_input_pixels = w * h
|
|
|
118 |
if current_input_pixels > max_input_pixels:
|
|
|
119 |
input_scale_factor = (max_input_pixels / current_input_pixels) ** 0.5
|
120 |
-
input_w_resized = max(8, int(w * input_scale_factor))
|
121 |
-
input_h_resized = max(8, int(h * input_scale_factor))
|
122 |
intermediate_w = input_w_resized * INTERNAL_PROCESSING_FACTOR
|
123 |
intermediate_h = input_h_resized * INTERNAL_PROCESSING_FACTOR
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
input_image_to_process = input_image_to_process.resize((input_w_resized, input_h_resized), Image.Resampling.LANCZOS)
|
127 |
-
was_resized = True
|
128 |
|
|
|
129 |
w_proc, h_proc = input_image_to_process.size
|
130 |
-
w_final_proc = max(8, w_proc - w_proc % 8)
|
131 |
-
h_final_proc = max(8, h_proc - h_proc % 8)
|
|
|
132 |
if (w_proc, h_proc) != (w_final_proc, h_final_proc):
|
133 |
-
logging.info(f"Rounding processed input
|
134 |
input_image_to_process = input_image_to_process.resize((w_final_proc, h_final_proc), Image.Resampling.LANCZOS)
|
135 |
|
136 |
return input_image_to_process, w_original, h_original, was_resized
|
137 |
|
138 |
|
139 |
# --- Inference Function (infer) ---
|
140 |
-
|
|
|
141 |
def infer(
|
142 |
-
seed,
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
):
|
|
|
146 |
global pipe
|
147 |
-
# ---
|
148 |
-
|
|
|
|
|
149 |
|
150 |
if pipe is None:
|
151 |
gr.Error("Pipeline not loaded. Cannot perform inference.")
|
152 |
-
return default_return
|
153 |
|
154 |
-
original_input_pil = input_image # Keep
|
155 |
|
|
|
156 |
if input_image is None:
|
157 |
gr.Warning("Please provide an input image.")
|
158 |
-
# Update seed in default return if randomized
|
159 |
-
if randomize_seed:
|
160 |
-
|
161 |
-
default_return[
|
162 |
-
return default_return
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
167 |
default_return[1] = seed
|
168 |
-
# --- Ensure original image is in the default return ---
|
169 |
default_return[0][0] = original_input_pil
|
170 |
|
171 |
-
|
172 |
final_upscale_factor = int(final_upscale_factor)
|
173 |
num_inference_steps = int(num_inference_steps)
|
174 |
|
|
|
175 |
if final_upscale_factor > INTERNAL_PROCESSING_FACTOR:
|
176 |
gr.Warning(f"Clamping final upscale factor {final_upscale_factor}x to internal {INTERNAL_PROCESSING_FACTOR}x.")
|
177 |
final_upscale_factor = INTERNAL_PROCESSING_FACTOR
|
178 |
|
179 |
-
logging.info(
|
|
|
|
|
|
|
|
|
180 |
|
|
|
181 |
try:
|
182 |
-
processed_input_image, w_original, h_original, was_input_resized = process_input(
|
|
|
|
|
183 |
except Exception as e:
|
184 |
logging.error(f"Error processing input image: {e}", exc_info=True)
|
185 |
gr.Error(f"Error processing input image: {e}")
|
186 |
-
return default_return # Use default return
|
187 |
|
|
|
188 |
w_proc, h_proc = processed_input_image.size
|
189 |
control_image_w = w_proc * INTERNAL_PROCESSING_FACTOR
|
190 |
control_image_h = h_proc * INTERNAL_PROCESSING_FACTOR
|
191 |
|
192 |
-
# Failsafe clamp
|
193 |
-
if control_image_w * control_image_h > MAX_PIXEL_BUDGET * 1.05:
|
194 |
scale_factor = (MAX_PIXEL_BUDGET / (control_image_w * control_image_h)) ** 0.5
|
195 |
-
control_image_w = max(8, int(control_image_w * scale_factor))
|
196 |
-
control_image_h = max(8, int(control_image_h * scale_factor))
|
197 |
-
|
|
|
|
|
|
|
198 |
gr.Warning(f"Control image dimensions further clamped to {control_image_w}x{control_image_h}.")
|
199 |
|
|
|
200 |
logging.info(f"Resizing processed input {w_proc}x{h_proc} to control image {control_image_w}x{control_image_h}")
|
201 |
try:
|
202 |
control_image = processed_input_image.resize((control_image_w, control_image_h), Image.Resampling.LANCZOS)
|
203 |
except ValueError as resize_err:
|
204 |
-
logging.error(f"Error resizing to control image: {resize_err}")
|
205 |
gr.Error(f"Failed to prepare control image: {resize_err}")
|
206 |
-
return default_return
|
207 |
|
|
|
208 |
generator = torch.Generator(device=device).manual_seed(seed)
|
209 |
|
210 |
-
|
|
|
211 |
logging.info(f"Running pipeline: size={control_image_w}x{control_image_h}, steps={num_inference_steps}")
|
212 |
-
intermediate_result_image = None # Initialize
|
213 |
try:
|
214 |
with torch.inference_mode():
|
215 |
-
|
216 |
intermediate_result_image = pipe(
|
217 |
-
prompt="",
|
|
|
218 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
219 |
-
num_inference_steps=num_inference_steps,
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
221 |
).images[0]
|
222 |
-
logging.info(f"Pipeline finished. Intermediate size: {intermediate_result_image.size if intermediate_result_image else 'None'}")
|
223 |
|
224 |
-
# --- Catch specific errors if needed, otherwise general Exception ---
|
225 |
except torch.cuda.OutOfMemoryError as oom_error:
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
#
|
|
|
|
|
233 |
if "dynamic shape operator" in str(e) or "Unsupported" in str(e.__class__):
|
234 |
-
gr.Error(f"Inference failed: torch.compile issue encountered ({type(e).__name__}).
|
235 |
else:
|
236 |
-
|
237 |
-
return default_return
|
238 |
|
239 |
-
# ---
|
240 |
if not intermediate_result_image:
|
241 |
-
|
|
|
242 |
gr.Error("Inference produced no result image unexpectedly.")
|
243 |
-
return default_return
|
244 |
|
245 |
-
#
|
246 |
if was_input_resized:
|
|
|
247 |
final_target_w = w_proc * final_upscale_factor
|
248 |
final_target_h = h_proc * final_upscale_factor
|
249 |
-
logging.warning(f"Input downscaled. Final size based on processed: {w_proc}x{h_proc}*{final_upscale_factor}x -> {final_target_w}x{final_target_h}")
|
250 |
-
gr.Info(f"Input downscaled. Final size approx {final_target_w}x{final_target_h}.")
|
251 |
else:
|
|
|
252 |
final_target_w = w_original * final_upscale_factor
|
253 |
final_target_h = h_original * final_upscale_factor
|
254 |
|
|
|
255 |
final_result_image = intermediate_result_image
|
256 |
current_w, current_h = intermediate_result_image.size
|
257 |
|
258 |
if (current_w, current_h) != (final_target_w, final_target_h):
|
259 |
-
logging.info(f"Resizing intermediate {current_w}x{current_h} to final {final_target_w}x{final_target_h}")
|
260 |
gr.Info(f"Resizing from intermediate {current_w}x{current_h} to final {final_target_w}x{final_target_h}...")
|
261 |
try:
|
|
|
262 |
if final_target_w > 0 and final_target_h > 0:
|
|
|
263 |
final_result_image = intermediate_result_image.resize((final_target_w, final_target_h), Image.Resampling.LANCZOS)
|
264 |
else:
|
265 |
-
|
266 |
-
|
|
|
267 |
except Exception as resize_e:
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
271 |
else:
|
272 |
-
|
|
|
273 |
|
274 |
logging.info(f"Inference successful. Final output size: {final_result_image.size}")
|
275 |
|
276 |
-
# --- Base64 Encoding
|
277 |
base64_string = None
|
278 |
if final_result_image:
|
279 |
try:
|
280 |
-
buffered = io.BytesIO()
|
|
|
|
|
281 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
282 |
base64_string = f"data:image/webp;base64,{img_str}"
|
283 |
-
logging.info(f"Encoded result to Base64 (
|
284 |
except Exception as enc_err:
|
285 |
-
|
|
|
|
|
286 |
|
287 |
-
# ---
|
288 |
return [[original_input_pil, final_result_image], seed, base64_string]
|
289 |
|
290 |
-
|
291 |
-
#
|
292 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as demo:
|
293 |
-
gr.Markdown(
|
|
|
294 |
# ⚡ Flux.1-dev Upscaler ControlNet ⚡
|
295 |
-
Upscale images using Flux.1-dev Upscaler ControlNet on
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
with gr.Row():
|
301 |
-
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
with gr.Column(scale=1):
|
303 |
-
upscale_factor_slider = gr.Slider(
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
with gr.Row():
|
307 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
308 |
randomize_seed = gr.Checkbox(label="Random", value=True, scale=0, min_width=80)
|
309 |
run_button = gr.Button("⚡ Upscale Image", variant="primary", scale=1)
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
output_seed = gr.Textbox(label="Seed Used", interactive=False, visible=True, scale=1)
|
|
|
312 |
api_base64_output = gr.Textbox(label="API Base64 Output", interactive=False, visible=False)
|
313 |
|
314 |
-
|
|
|
|
|
315 |
example_paths = [os.path.join(example_dir, f) for f in example_files if os.path.exists(os.path.join(example_dir, f))]
|
|
|
316 |
if example_paths:
|
317 |
gr.Examples(
|
|
|
318 |
examples=[ [path, min(2, INTERNAL_PROCESSING_FACTOR), 15, 0.6, random.randint(0,MAX_SEED), True] for path in example_paths ],
|
319 |
inputs=[ input_im, upscale_factor_slider, num_inference_steps, controlnet_conditioning_scale, seed, randomize_seed, ],
|
320 |
-
outputs
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
demo.queue(max_size=10).launch(share=False, show_api=True)
|
|
|
|
|
1 |
import logging
|
2 |
import random
|
3 |
import warnings
|
|
|
6 |
import base64
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
+
import spaces # Ensure spaces is imported for the decorator
|
10 |
import torch
|
11 |
+
# --- Optional: Add this if trying Solution 2 (suppress_errors) later ---
|
12 |
# import torch._dynamo
|
13 |
from diffusers import FluxControlNetModel
|
14 |
from diffusers.pipelines import FluxControlNetPipeline
|
|
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
19 |
# --- Setup Logging and Device ---
|
|
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
warnings.filterwarnings("ignore")
|
22 |
|
|
|
26 |
"""
|
27 |
|
28 |
if torch.cuda.is_available():
|
29 |
+
power_device = "GPU"
|
30 |
+
device = "cuda"
|
31 |
+
torch_dtype = torch.bfloat16
|
32 |
else:
|
33 |
+
power_device = "CPU"
|
34 |
+
device = "cpu"
|
35 |
+
torch_dtype = torch.float32
|
36 |
logging.info(f"Selected device: {device} | Data type: {torch_dtype}")
|
37 |
|
38 |
# --- Authentication and Model Download ---
|
|
|
43 |
pipe = None
|
44 |
|
45 |
try:
|
|
|
46 |
logging.info(f"Downloading base model: {flux_model_id}")
|
47 |
+
model_path = snapshot_download(
|
48 |
+
repo_id=flux_model_id,
|
49 |
+
repo_type="model",
|
50 |
+
ignore_patterns=["*.md", "*.gitattributes"],
|
51 |
+
local_dir=local_model_dir,
|
52 |
+
token=huggingface_token
|
53 |
+
)
|
54 |
logging.info(f"Base model downloaded/verified in: {model_path}")
|
55 |
|
56 |
logging.info(f"Loading ControlNet model: {controlnet_model_id}")
|
57 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
58 |
+
controlnet_model_id, torch_dtype=torch_dtype
|
59 |
+
).to(device)
|
60 |
logging.info("ControlNet model loaded.")
|
61 |
|
62 |
logging.info("Loading FluxControlNetPipeline...")
|
63 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
64 |
+
model_path,
|
65 |
+
controlnet=controlnet,
|
66 |
+
torch_dtype=torch_dtype
|
67 |
+
)
|
68 |
pipe.to(device)
|
69 |
logging.info("Pipeline loaded and moved to device.")
|
70 |
|
71 |
# --- OPTIMIZATION: Attempt torch.compile (PyTorch 2.0+) ---
|
72 |
if device == "cuda" and hasattr(torch, "compile"):
|
73 |
+
# --- Using "default" mode as first attempt to fix compile errors ---
|
74 |
compile_mode = "default"
|
75 |
+
# --- Alternative (Solution 2): Uncomment these lines if "default" fails ---
|
76 |
# import torch._dynamo
|
77 |
# torch._dynamo.config.suppress_errors = True
|
78 |
# compile_mode = "max-autotune" # or "default" even with suppress_errors
|
|
|
82 |
try:
|
83 |
pipe.transformer = torch.compile(pipe.transformer, mode=compile_mode, fullgraph=True)
|
84 |
logging.info("Pipeline transformer compiled successfully.")
|
85 |
+
# Optional dummy inference run can go here for pre-compilation
|
86 |
except Exception as e:
|
87 |
logging.warning(f"torch.compile failed (mode='{compile_mode}'): {e}. Running unoptimized.")
|
88 |
+
# --- Fallback (Solution 3): If compilation fails consistently, comment out the compile line above ---
|
89 |
# pipe.transformer = torch.compile(pipe.transformer, mode=compile_mode, fullgraph=True) # <-- Comment this out
|
90 |
else:
|
91 |
logging.info("torch.compile not available or not on CUDA, skipping compilation.")
|
92 |
|
93 |
+
# --- (Optional xformers code could be added here if used) ---
|
94 |
|
95 |
logging.info("Pipeline ready for inference.")
|
96 |
|
97 |
except Exception as e:
|
98 |
+
# Log the full error traceback for debugging
|
99 |
logging.error(f"FATAL: Error during model loading or setup: {e}", exc_info=True)
|
100 |
+
# Print a simple message to console as well
|
101 |
print(f"FATAL ERROR DURING MODEL LOAD/SETUP: {e}")
|
102 |
+
# Exit if models can't load - Gradio app won't work anyway
|
103 |
raise SystemExit(f"Model loading/setup failed: {e}")
|
104 |
|
|
|
105 |
# --- Constants ---
|
106 |
MAX_SEED = 2**32 - 1
|
107 |
+
MAX_PIXEL_BUDGET = 1280 * 1280 # Max pixels for the *intermediate* image
|
108 |
+
INTERNAL_PROCESSING_FACTOR = 4 # Factor used for quality generation
|
109 |
|
110 |
# --- Image Processing Function (process_input) ---
|
|
|
111 |
def process_input(input_image):
|
112 |
+
"""Processes input image: handles orientation, converts to RGB, checks budget, rounds dimensions."""
|
113 |
+
if input_image is None:
|
114 |
+
raise gr.Error("Input image is missing!")
|
115 |
try:
|
116 |
+
# Ensure it's a PIL Image and handle EXIF orientation
|
117 |
input_image = ImageOps.exif_transpose(input_image)
|
118 |
+
# Convert to RGB if needed
|
119 |
+
if input_image.mode != 'RGB':
|
120 |
+
logging.info(f"Converting input image from {input_image.mode} to RGB")
|
121 |
+
input_image = input_image.convert('RGB')
|
122 |
w, h = input_image.size
|
123 |
+
except AttributeError:
|
124 |
+
# Catch cases where input_image might not be a valid PIL Image object
|
125 |
+
raise gr.Error("Invalid input image format. Please provide a valid image file.")
|
126 |
+
except Exception as img_err:
|
127 |
+
# Catch other potential PIL errors
|
128 |
+
raise gr.Error(f"Could not process input image: {img_err}")
|
129 |
|
130 |
w_original, h_original = w, h
|
131 |
+
if w == 0 or h == 0:
|
132 |
+
raise gr.Error("Input image has zero width or height.")
|
133 |
|
134 |
+
# Calculate target intermediate size based on INTERNAL factor for budget check
|
135 |
target_w_internal = w * INTERNAL_PROCESSING_FACTOR
|
136 |
target_h_internal = h * INTERNAL_PROCESSING_FACTOR
|
137 |
target_pixels_internal = target_w_internal * target_h_internal
|
138 |
+
|
139 |
was_resized = False
|
140 |
+
input_image_to_process = input_image.copy() # Work on a copy
|
141 |
|
142 |
+
# Check if the *intermediate* size exceeds the budget
|
143 |
if target_pixels_internal > MAX_PIXEL_BUDGET:
|
144 |
+
# Calculate the maximum allowed input pixels for the given internal factor
|
145 |
max_input_pixels = MAX_PIXEL_BUDGET / (INTERNAL_PROCESSING_FACTOR**2)
|
146 |
current_input_pixels = w * h
|
147 |
+
|
148 |
if current_input_pixels > max_input_pixels:
|
149 |
+
# Calculate scaling factor to fit budget and resize input
|
150 |
input_scale_factor = (max_input_pixels / current_input_pixels) ** 0.5
|
151 |
+
input_w_resized = max(8, int(w * input_scale_factor)) # Ensure min size 8
|
152 |
+
input_h_resized = max(8, int(h * input_scale_factor)) # Ensure min size 8
|
153 |
intermediate_w = input_w_resized * INTERNAL_PROCESSING_FACTOR
|
154 |
intermediate_h = input_h_resized * INTERNAL_PROCESSING_FACTOR
|
155 |
+
|
156 |
+
logging.warning(
|
157 |
+
f"Requested {INTERNAL_PROCESSING_FACTOR}x intermediate output ({target_w_internal}x{target_h_internal}) exceeds budget. "
|
158 |
+
f"Resizing input from {w}x{h} to {input_w_resized}x{input_h_resized}."
|
159 |
+
)
|
160 |
+
gr.Info(
|
161 |
+
f"Intermediate {INTERNAL_PROCESSING_FACTOR}x size exceeds budget. Input resized to {input_w_resized}x{input_h_resized} "
|
162 |
+
f"-> model generates ~{int(intermediate_w)}x{int(intermediate_h)}."
|
163 |
+
)
|
164 |
input_image_to_process = input_image_to_process.resize((input_w_resized, input_h_resized), Image.Resampling.LANCZOS)
|
165 |
+
was_resized = True # Flag that original dimensions were lost for final scaling
|
166 |
|
167 |
+
# Round processed input dimensions down to nearest multiple of 8 (required by some models)
|
168 |
w_proc, h_proc = input_image_to_process.size
|
169 |
+
w_final_proc = max(8, w_proc - w_proc % 8) # Ensure minimum 8x8
|
170 |
+
h_final_proc = max(8, h_proc - h_proc % 8) # Ensure minimum 8x8
|
171 |
+
|
172 |
if (w_proc, h_proc) != (w_final_proc, h_final_proc):
|
173 |
+
logging.info(f"Rounding processed input dimensions from {w_proc}x{h_proc} to {w_final_proc}x{h_final_proc}")
|
174 |
input_image_to_process = input_image_to_process.resize((w_final_proc, h_final_proc), Image.Resampling.LANCZOS)
|
175 |
|
176 |
return input_image_to_process, w_original, h_original, was_resized
|
177 |
|
178 |
|
179 |
# --- Inference Function (infer) ---
|
180 |
+
# --- MODIFIED GPU DURATION ---
|
181 |
+
@spaces.GPU(duration=75)
|
182 |
def infer(
|
183 |
+
seed,
|
184 |
+
randomize_seed,
|
185 |
+
input_image,
|
186 |
+
num_inference_steps,
|
187 |
+
final_upscale_factor,
|
188 |
+
controlnet_conditioning_scale,
|
189 |
+
progress=gr.Progress(track_tqdm=True), # Gradio progress tracking
|
190 |
):
|
191 |
+
"""Runs the Flux ControlNet upscaling pipeline."""
|
192 |
global pipe
|
193 |
+
# --- Define default return structure for error cases ---
|
194 |
+
# [[Input Image or None, Output Image or None], Seed Int, Base64 String or None]
|
195 |
+
current_seed = int(seed) if seed is not None else 0
|
196 |
+
default_return = [[input_image, None], current_seed, None]
|
197 |
|
198 |
if pipe is None:
|
199 |
gr.Error("Pipeline not loaded. Cannot perform inference.")
|
200 |
+
return default_return
|
201 |
|
202 |
+
original_input_pil = input_image # Keep reference to original input
|
203 |
|
204 |
+
# Handle missing input image
|
205 |
if input_image is None:
|
206 |
gr.Warning("Please provide an input image.")
|
207 |
+
# Update seed in default return if randomized, keep original image as None
|
208 |
+
if randomize_seed: current_seed = random.randint(0, MAX_SEED)
|
209 |
+
default_return[1] = current_seed
|
210 |
+
default_return[0][0] = None # Explicitly set original image part to None
|
211 |
+
return default_return
|
212 |
+
|
213 |
+
# Determine seed
|
214 |
+
if randomize_seed:
|
215 |
+
current_seed = random.randint(0, MAX_SEED)
|
216 |
+
seed = int(current_seed) # Use the final determined seed
|
217 |
+
# Update default return with final seed and original image
|
218 |
default_return[1] = seed
|
|
|
219 |
default_return[0][0] = original_input_pil
|
220 |
|
221 |
+
# Ensure numerical inputs are integers
|
222 |
final_upscale_factor = int(final_upscale_factor)
|
223 |
num_inference_steps = int(num_inference_steps)
|
224 |
|
225 |
+
# Clamp final factor if needed
|
226 |
if final_upscale_factor > INTERNAL_PROCESSING_FACTOR:
|
227 |
gr.Warning(f"Clamping final upscale factor {final_upscale_factor}x to internal {INTERNAL_PROCESSING_FACTOR}x.")
|
228 |
final_upscale_factor = INTERNAL_PROCESSING_FACTOR
|
229 |
|
230 |
+
logging.info(
|
231 |
+
f"Starting inference: seed={seed}, internal={INTERNAL_PROCESSING_FACTOR}x, "
|
232 |
+
f"final={final_upscale_factor}x, steps={num_inference_steps}, "
|
233 |
+
f"cnet_scale={controlnet_conditioning_scale}"
|
234 |
+
)
|
235 |
|
236 |
+
# Process the input image
|
237 |
try:
|
238 |
+
processed_input_image, w_original, h_original, was_input_resized = process_input(
|
239 |
+
input_image
|
240 |
+
)
|
241 |
except Exception as e:
|
242 |
logging.error(f"Error processing input image: {e}", exc_info=True)
|
243 |
gr.Error(f"Error processing input image: {e}")
|
244 |
+
return default_return # Use default return structure
|
245 |
|
246 |
+
# Calculate intermediate dimensions for the model
|
247 |
w_proc, h_proc = processed_input_image.size
|
248 |
control_image_w = w_proc * INTERNAL_PROCESSING_FACTOR
|
249 |
control_image_h = h_proc * INTERNAL_PROCESSING_FACTOR
|
250 |
|
251 |
+
# Failsafe clamp if budget is still somehow exceeded after input processing
|
252 |
+
if control_image_w * control_image_h > MAX_PIXEL_BUDGET * 1.05: # Add 5% margin just in case
|
253 |
scale_factor = (MAX_PIXEL_BUDGET / (control_image_w * control_image_h)) ** 0.5
|
254 |
+
control_image_w = max(8, int(control_image_w * scale_factor))
|
255 |
+
control_image_h = max(8, int(control_image_h * scale_factor))
|
256 |
+
# Ensure multiple of 8 after scaling
|
257 |
+
control_image_w = max(8, control_image_w - control_image_w % 8)
|
258 |
+
control_image_h = max(8, control_image_h - control_image_h % 8)
|
259 |
+
logging.warning(f"Control image dimensions clamped post-processing to {control_image_w}x{control_image_h} to fit budget.")
|
260 |
gr.Warning(f"Control image dimensions further clamped to {control_image_w}x{control_image_h}.")
|
261 |
|
262 |
+
# Prepare control image (resized input for ControlNet)
|
263 |
logging.info(f"Resizing processed input {w_proc}x{h_proc} to control image {control_image_w}x{control_image_h}")
|
264 |
try:
|
265 |
control_image = processed_input_image.resize((control_image_w, control_image_h), Image.Resampling.LANCZOS)
|
266 |
except ValueError as resize_err:
|
267 |
+
logging.error(f"Error resizing processed input to control image: {resize_err}")
|
268 |
gr.Error(f"Failed to prepare control image: {resize_err}")
|
269 |
+
return default_return
|
270 |
|
271 |
+
# Setup generator for reproducibility
|
272 |
generator = torch.Generator(device=device).manual_seed(seed)
|
273 |
|
274 |
+
# --- Run the Diffusion Pipeline ---
|
275 |
+
gr.Info(f"Generating intermediate image at {INTERNAL_PROCESSING_FACTOR}x quality ({control_image_w}x{control_image_h}) with {num_inference_steps} steps...")
|
276 |
logging.info(f"Running pipeline: size={control_image_w}x{control_image_h}, steps={num_inference_steps}")
|
277 |
+
intermediate_result_image = None # Initialize to None
|
278 |
try:
|
279 |
with torch.inference_mode():
|
280 |
+
# The actual model inference call
|
281 |
intermediate_result_image = pipe(
|
282 |
+
prompt="", # No text prompt needed for this upscaler
|
283 |
+
control_image=control_image,
|
284 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
285 |
+
num_inference_steps=num_inference_steps,
|
286 |
+
guidance_scale=0.0, # Guidance scale typically 0 for ControlNet-only tasks
|
287 |
+
height=control_image_h, # Target height for the model
|
288 |
+
width=control_image_w, # Target width for the model
|
289 |
+
generator=generator,
|
290 |
+
# Can add callback for step progress if needed:
|
291 |
+
# callback_on_step_end=lambda step, t, latents: progress(step / num_inference_steps)
|
292 |
).images[0]
|
293 |
+
logging.info(f"Pipeline execution finished. Intermediate image size: {intermediate_result_image.size if intermediate_result_image else 'None'}")
|
294 |
|
|
|
295 |
except torch.cuda.OutOfMemoryError as oom_error:
|
296 |
+
# Handle specific OOM error
|
297 |
+
logging.error(f"CUDA Out of Memory during pipeline execution: {oom_error}", exc_info=True)
|
298 |
+
gr.Error(f"Ran out of GPU memory trying to generate intermediate {control_image_w}x{control_image_h}. Try reducing the Final Upscale Factor or using a smaller input image.")
|
299 |
+
if device == 'cuda': torch.cuda.empty_cache() # Try to clear cache
|
300 |
+
return default_return
|
301 |
+
except Exception as e:
|
302 |
+
# Handle other pipeline errors, including potential torch.compile issues
|
303 |
+
logging.error(f"Error during pipeline execution: {e}", exc_info=True)
|
304 |
+
# Check if it looks like the known compile error
|
305 |
if "dynamic shape operator" in str(e) or "Unsupported" in str(e.__class__):
|
306 |
+
gr.Error(f"Inference failed: torch.compile issue encountered ({type(e).__name__}). The model attempted to run unoptimized. If this persists, compilation might need to be disabled in the code.")
|
307 |
else:
|
308 |
+
gr.Error(f"Inference failed: {e}")
|
309 |
+
return default_return
|
310 |
|
311 |
+
# --- Post-Pipeline Checks and Resizing ---
|
312 |
if not intermediate_result_image:
|
313 |
+
# Should ideally not happen if no exception was caught, but check anyway
|
314 |
+
logging.error("Intermediate result image is None after pipeline execution without exception.")
|
315 |
gr.Error("Inference produced no result image unexpectedly.")
|
316 |
+
return default_return
|
317 |
|
318 |
+
# Calculate final target dimensions based on ORIGINAL input size and FINAL upscale factor
|
319 |
if was_input_resized:
|
320 |
+
# Base final size on the downscaled input that was processed
|
321 |
final_target_w = w_proc * final_upscale_factor
|
322 |
final_target_h = h_proc * final_upscale_factor
|
323 |
+
logging.warning(f"Input was downscaled. Final size based on processed input: {w_proc}x{h_proc} * {final_upscale_factor}x -> {final_target_w}x{final_target_h}")
|
324 |
+
gr.Info(f"Input was downscaled. Final size target approx {final_target_w}x{final_target_h}.")
|
325 |
else:
|
326 |
+
# Base final size on the original input size
|
327 |
final_target_w = w_original * final_upscale_factor
|
328 |
final_target_h = h_original * final_upscale_factor
|
329 |
|
330 |
+
# Perform final resize from intermediate to target size
|
331 |
final_result_image = intermediate_result_image
|
332 |
current_w, current_h = intermediate_result_image.size
|
333 |
|
334 |
if (current_w, current_h) != (final_target_w, final_target_h):
|
335 |
+
logging.info(f"Resizing intermediate image from {current_w}x{current_h} to final target size {final_target_w}x{final_target_h} (using {final_upscale_factor}x factor)")
|
336 |
gr.Info(f"Resizing from intermediate {current_w}x{current_h} to final {final_target_w}x{final_target_h}...")
|
337 |
try:
|
338 |
+
# Ensure target dimensions are valid before resizing
|
339 |
if final_target_w > 0 and final_target_h > 0:
|
340 |
+
# Use high-quality LANCZOS for downsampling or general resizing
|
341 |
final_result_image = intermediate_result_image.resize((final_target_w, final_target_h), Image.Resampling.LANCZOS)
|
342 |
else:
|
343 |
+
# Avoid resizing if target dimensions are invalid
|
344 |
+
gr.Warning(f"Invalid final target dimensions ({final_target_w}x{final_target_h}). Skipping final resize.")
|
345 |
+
final_result_image = intermediate_result_image # Keep intermediate
|
346 |
except Exception as resize_e:
|
347 |
+
# Handle potential errors during final resize
|
348 |
+
logging.error(f"Could not resize intermediate image to final size: {resize_e}")
|
349 |
+
gr.Warning(f"Failed to resize to final {final_upscale_factor}x. Returning intermediate {INTERNAL_PROCESSING_FACTOR}x result ({current_w}x{current_h}).")
|
350 |
+
final_result_image = intermediate_result_image # Fallback to intermediate
|
351 |
else:
|
352 |
+
# No resize needed if intermediate matches final target
|
353 |
+
logging.info(f"Intermediate size {current_w}x{current_h} matches final target size. No final resize needed.")
|
354 |
|
355 |
logging.info(f"Inference successful. Final output size: {final_result_image.size}")
|
356 |
|
357 |
+
# --- Base64 Encoding for API output ---
|
358 |
base64_string = None
|
359 |
if final_result_image:
|
360 |
try:
|
361 |
+
buffered = io.BytesIO()
|
362 |
+
# Save as WEBP for potentially smaller size, adjust quality as needed
|
363 |
+
final_result_image.save(buffered, format="WEBP", quality=90)
|
364 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
365 |
+
# Format as a data URL
|
366 |
base64_string = f"data:image/webp;base64,{img_str}"
|
367 |
+
logging.info(f"Encoded result image to Base64 string (length: {len(base64_string)} chars).")
|
368 |
except Exception as enc_err:
|
369 |
+
# Log if encoding fails but don't stop the process
|
370 |
+
logging.error(f"Failed to encode result image to Base64: {enc_err}", exc_info=True)
|
371 |
+
base64_string = None # Ensure it's None if encoding failed
|
372 |
|
373 |
+
# --- Return results for Gradio ---
|
374 |
return [[original_input_pil, final_result_image], seed, base64_string]
|
375 |
|
376 |
+
|
377 |
+
# --- Gradio Interface Definition ---
|
378 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as demo:
|
379 |
+
gr.Markdown(
|
380 |
+
f"""
|
381 |
# ⚡ Flux.1-dev Upscaler ControlNet ⚡
|
382 |
+
Upscale images using the [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) model based on [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
|
383 |
+
Currently running on **{power_device}**. Hardware provided by Hugging Face 🤗.
|
384 |
+
|
385 |
+
**How it works:** This demo uses an internal processing scale of **{INTERNAL_PROCESSING_FACTOR}x** for potentially higher detail generation (slower),
|
386 |
+
then resizes the result to your selected **Final Upscale Factor**.
|
387 |
+
|
388 |
+
**To Speed Up:**
|
389 |
+
1. **Reduce `Inference Steps`:** Fewer steps = faster generation (try 10-15).
|
390 |
+
2. **(Code Change Needed):** Reduce `INTERNAL_PROCESSING_FACTOR` in the script (e.g., to 3) for direct computation reduction (may lower detail).
|
391 |
+
3. `torch.compile` is attempted (`mode="default"`) which might provide speedup after the first run (check logs for success/failure).
|
392 |
+
|
393 |
+
*Limit*: Intermediate processing resolution capped around **{MAX_PIXEL_BUDGET/1_000_000:.1f} megapixels** ({int(MAX_PIXEL_BUDGET**0.5)}x{int(MAX_PIXEL_BUDGET**0.5)}).
|
394 |
+
"""
|
395 |
+
)
|
396 |
+
|
397 |
with gr.Row():
|
398 |
+
with gr.Column(scale=2):
|
399 |
+
input_im = gr.Image(
|
400 |
+
label="Input Image",
|
401 |
+
type="pil",
|
402 |
+
height=350,
|
403 |
+
sources=["upload", "clipboard"],
|
404 |
+
)
|
405 |
with gr.Column(scale=1):
|
406 |
+
upscale_factor_slider = gr.Slider(
|
407 |
+
label="Final Upscale Factor",
|
408 |
+
info=f"Output size relative to input. Internal processing uses {INTERNAL_PROCESSING_FACTOR}x quality.",
|
409 |
+
minimum=1,
|
410 |
+
maximum=INTERNAL_PROCESSING_FACTOR, # Max limited by internal factor
|
411 |
+
step=1,
|
412 |
+
value=min(2, INTERNAL_PROCESSING_FACTOR) # Default to 2x or internal factor if smaller
|
413 |
+
)
|
414 |
+
num_inference_steps = gr.Slider(
|
415 |
+
label="Inference Steps",
|
416 |
+
info="Fewer steps = faster. Try 10-15.",
|
417 |
+
minimum=4, maximum=50, step=1, value=15 # Defaulting to 15 for speed
|
418 |
+
)
|
419 |
+
controlnet_conditioning_scale = gr.Slider(
|
420 |
+
label="ControlNet Conditioning Scale",
|
421 |
+
info="Strength of ControlNet guidance.",
|
422 |
+
minimum=0.0, maximum=1.5, step=0.05, value=0.6
|
423 |
+
)
|
424 |
with gr.Row():
|
425 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
426 |
randomize_seed = gr.Checkbox(label="Random", value=True, scale=0, min_width=80)
|
427 |
run_button = gr.Button("⚡ Upscale Image", variant="primary", scale=1)
|
428 |
+
|
429 |
+
with gr.Row():
|
430 |
+
result_slider = ImageSlider(
|
431 |
+
label="Input / Output Comparison",
|
432 |
+
type="pil",
|
433 |
+
interactive=False, # Output only
|
434 |
+
show_label=True,
|
435 |
+
position=0.5 # Start slider in the middle
|
436 |
+
)
|
437 |
+
|
438 |
output_seed = gr.Textbox(label="Seed Used", interactive=False, visible=True, scale=1)
|
439 |
+
# Hidden output for API usage
|
440 |
api_base64_output = gr.Textbox(label="API Base64 Output", interactive=False, visible=False)
|
441 |
|
442 |
+
# --- Examples ---
|
443 |
+
example_dir = "examples"
|
444 |
+
example_files = ["image_2.jpg", "image_4.jpg", "low_res_face.png", "low_res_landscape.png"]
|
445 |
example_paths = [os.path.join(example_dir, f) for f in example_files if os.path.exists(os.path.join(example_dir, f))]
|
446 |
+
|
447 |
if example_paths:
|
448 |
gr.Examples(
|
449 |
+
# Examples use the new defaults: final factor 2x (or less), steps 15
|
450 |
examples=[ [path, min(2, INTERNAL_PROCESSING_FACTOR), 15, 0.6, random.randint(0,MAX_SEED), True] for path in example_paths ],
|
451 |
inputs=[ input_im, upscale_factor_slider, num_inference_steps, controlnet_conditioning_scale, seed, randomize_seed, ],
|
452 |
+
# Map outputs to UI components; base64 ignored by Examples UI
|
453 |
+
outputs=[result_slider, output_seed],
|
454 |
+
fn=infer, # Function to call when example is clicked
|
455 |
+
cache_examples="lazy", # Cache results for examples
|
456 |
+
label=f"Example Images (Click to Run with {min(2, INTERNAL_PROCESSING_FACTOR)}x Output, 15 Steps)",
|
457 |
+
run_on_click=True
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
gr.Markdown(f"*No example images found in '{example_dir}' directory.*")
|
461 |
+
|
462 |
+
gr.Markdown("---")
|
463 |
+
gr.Markdown("**Disclaimer:** Demo for illustrative purposes. Users are responsible for generated content.")
|
464 |
+
|
465 |
+
# Connect button click to the inference function
|
466 |
+
run_button.click(
|
467 |
+
fn=infer,
|
468 |
+
inputs=[
|
469 |
+
seed,
|
470 |
+
randomize_seed,
|
471 |
+
input_im,
|
472 |
+
num_inference_steps,
|
473 |
+
upscale_factor_slider,
|
474 |
+
controlnet_conditioning_scale,
|
475 |
+
],
|
476 |
+
# Map all return values from infer to the correct output components
|
477 |
+
outputs=[result_slider, output_seed, api_base64_output],
|
478 |
+
api_name="upscale" # Define API endpoint name
|
479 |
+
)
|
480 |
+
|
481 |
+
# Launch the Gradio app
|
482 |
+
# queue manages concurrent users/requests
|
483 |
+
# share=False means no public link generated by default
|
484 |
demo.queue(max_size=10).launch(share=False, show_api=True)
|