Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2, numpy as np, base64, io, os | |
import librosa, joblib | |
from deepface import DeepFace | |
# 1) 加载所有模型 | |
def load_models(): | |
DeepFace.analyze(img_path=np.zeros((224,224,3),dtype=np.uint8), | |
actions=['emotion'], enforce_detection=False) | |
voice_clf = joblib.load("voice_model.joblib") | |
return voice_clf | |
voice_clf = load_models() | |
st.title("📱 即時多模態情緒分析") | |
# 2) 即时人脸 | |
st.header("🖼 實時人臉情緒") | |
img_data = st.camera_input("對準鏡頭") | |
if img_data is not None: | |
arr = np.frombuffer(img_data.read(), np.uint8) | |
img = cv2.imdecode(arr, cv2.IMREAD_COLOR) | |
res = DeepFace.analyze(img, actions=["emotion"], enforce_detection=False) | |
emo = (res[0] if isinstance(res,list) else res).get("dominant_emotion","unknown") | |
st.write("情緒:", emo) | |
# 3) 語音上傳 | |
st.header("🎤 上傳語音情緒") | |
audio = st.file_uploader("請上傳 WAV 音檔", type=["wav"]) | |
if audio is not None: | |
with open("tmp.wav","wb") as f: f.write(audio.getbuffer()) | |
y, sr = librosa.load("tmp.wav", sr=None) | |
mf = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13).T,axis=0) | |
emo = voice_clf.predict([mf])[0] | |
st.write("情緒:", emo) | |
# 4) 文字輸入 | |
st.header("📝 輸入文字情緒") | |
txt = st.text_input("打些文字…") | |
if txt: | |
# copy 你的 analyze_text_fn | |
emo = analyze_text_fn(txt) | |
st.write("情緒:", emo) | |