GCLing commited on
Commit
84ae43f
·
verified ·
1 Parent(s): f7c1bf1

Create streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +44 -0
streamlit_app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2, numpy as np, base64, io, os
3
+ import librosa, joblib
4
+ from deepface import DeepFace
5
+
6
+ # 1) 加载所有模型
7
+ @st.cache_resource
8
+ def load_models():
9
+ DeepFace.analyze(img_path=np.zeros((224,224,3),dtype=np.uint8),
10
+ actions=['emotion'], enforce_detection=False)
11
+ voice_clf = joblib.load("voice_model.joblib")
12
+ return voice_clf
13
+
14
+ voice_clf = load_models()
15
+
16
+ st.title("📱 即時多模態情緒分析")
17
+
18
+ # 2) 即时人脸
19
+ st.header("🖼 實時人臉情緒")
20
+ img_data = st.camera_input("對準鏡頭")
21
+ if img_data is not None:
22
+ arr = np.frombuffer(img_data.read(), np.uint8)
23
+ img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
24
+ res = DeepFace.analyze(img, actions=["emotion"], enforce_detection=False)
25
+ emo = (res[0] if isinstance(res,list) else res).get("dominant_emotion","unknown")
26
+ st.write("情緒:", emo)
27
+
28
+ # 3) 語音上傳
29
+ st.header("🎤 上傳語音情緒")
30
+ audio = st.file_uploader("請上傳 WAV 音檔", type=["wav"])
31
+ if audio is not None:
32
+ with open("tmp.wav","wb") as f: f.write(audio.getbuffer())
33
+ y, sr = librosa.load("tmp.wav", sr=None)
34
+ mf = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13).T,axis=0)
35
+ emo = voice_clf.predict([mf])[0]
36
+ st.write("情緒:", emo)
37
+
38
+ # 4) 文字輸入
39
+ st.header("📝 輸入文字情緒")
40
+ txt = st.text_input("打些文字…")
41
+ if txt:
42
+ # copy 你的 analyze_text_fn
43
+ emo = analyze_text_fn(txt)
44
+ st.write("情緒:", emo)