Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import cv2, numpy as np, base64, io, os | |
| import librosa, joblib | |
| from deepface import DeepFace | |
| # 1) 加载所有模型 | |
| def load_models(): | |
| DeepFace.analyze(img_path=np.zeros((224,224,3),dtype=np.uint8), | |
| actions=['emotion'], enforce_detection=False) | |
| voice_clf = joblib.load("voice_model.joblib") | |
| return voice_clf | |
| voice_clf = load_models() | |
| st.title("📱 即時多模態情緒分析") | |
| # 2) 即时人脸 | |
| st.header("🖼 實時人臉情緒") | |
| img_data = st.camera_input("對準鏡頭") | |
| if img_data is not None: | |
| arr = np.frombuffer(img_data.read(), np.uint8) | |
| img = cv2.imdecode(arr, cv2.IMREAD_COLOR) | |
| res = DeepFace.analyze(img, actions=["emotion"], enforce_detection=False) | |
| emo = (res[0] if isinstance(res,list) else res).get("dominant_emotion","unknown") | |
| st.write("情緒:", emo) | |
| # 3) 語音上傳 | |
| st.header("🎤 上傳語音情緒") | |
| audio = st.file_uploader("請上傳 WAV 音檔", type=["wav"]) | |
| if audio is not None: | |
| with open("tmp.wav","wb") as f: f.write(audio.getbuffer()) | |
| y, sr = librosa.load("tmp.wav", sr=None) | |
| mf = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13).T,axis=0) | |
| emo = voice_clf.predict([mf])[0] | |
| st.write("情緒:", emo) | |
| # 4) 文字輸入 | |
| st.header("📝 輸入文字情緒") | |
| txt = st.text_input("打些文字…") | |
| if txt: | |
| # copy 你的 analyze_text_fn | |
| emo = analyze_text_fn(txt) | |
| st.write("情緒:", emo) | |