|
import gradio as gr |
|
print("Gradio version:", gr.__version__) |
|
import os, time, re |
|
import numpy as np |
|
import joblib |
|
import librosa |
|
from huggingface_hub import hf_hub_download |
|
from deepface import DeepFace |
|
from transformers import pipeline |
|
|
|
|
|
|
|
print("Downloading SVM model from Hugging Face Hub...") |
|
model_path = hf_hub_download(repo_id="GCLing/emotion-svm-model", filename="svm_emotion_model.joblib") |
|
print(f"SVM model downloaded to: {model_path}") |
|
svm_model = joblib.load(model_path) |
|
print("SVM model loaded.") |
|
|
|
|
|
try: |
|
zero_shot = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli") |
|
except Exception as e: |
|
print("加载 zero-shot pipeline 失败:", e) |
|
zero_shot = None |
|
|
|
candidate_labels = ["joy", "sadness", "anger", "fear", "surprise", "disgust"] |
|
label_map_en2cn = { |
|
"joy": "高興", "sadness": "悲傷", "anger": "憤怒", |
|
"fear": "恐懼", "surprise": "驚訝", "disgust": "厭惡" |
|
} |
|
|
|
|
|
emo_keywords = { |
|
"happy": ["開心","快樂","愉快","喜悦","喜悅","歡喜","興奮","高興"], |
|
"angry": ["生氣","憤怒","不爽","發火","火大","氣憤"], |
|
"sad": ["傷心","難過","哭","難受","心酸","憂","悲","哀","痛苦","慘","愁"], |
|
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"], |
|
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"], |
|
"disgust": ["噁心","厭惡","反感"] |
|
} |
|
|
|
negations = ["不","沒","沒有","別","勿","非"] |
|
|
|
def keyword_emotion(text: str): |
|
""" |
|
规则方法:扫描 emo_keywords,处理前置否定词。 |
|
返回 None 或 {} 表示规则未命中;否则返回非空 dict,例如 {'angry': 2, 'sad':1} 或归一化 {'angry':0.67,'sad':0.33}。 |
|
""" |
|
if not text or text.strip() == "": |
|
return None |
|
text_proc = text.strip() |
|
counts = {emo: 0 for emo in emo_keywords} |
|
for emo, kws in emo_keywords.items(): |
|
for w in kws: |
|
idx = text_proc.find(w) |
|
if idx != -1: |
|
|
|
neg = False |
|
for neg_word in negations: |
|
plen = len(neg_word) |
|
if idx - plen >= 0 and text_proc[idx-plen:idx] == neg_word: |
|
neg = True |
|
break |
|
if not neg: |
|
counts[emo] += 1 |
|
else: |
|
|
|
pass |
|
total = sum(counts.values()) |
|
if total > 0: |
|
|
|
return {emo: counts[emo] / total for emo in counts if counts[emo] > 0} |
|
else: |
|
return None |
|
|
|
def predict_text_mixed(text: str): |
|
""" |
|
文本情绪分析:先规则,若规则命中返回最高情绪及其比例;否则fallback zero-shot返回多类别分布。 |
|
返回 dict[str, float],供 Gradio Label 显示。 |
|
""" |
|
print("predict_text_mixed called, text:", repr(text)) |
|
if not text or text.strip() == "": |
|
print("輸入為空,返回空") |
|
return {} |
|
|
|
res = keyword_emotion(text) |
|
print("keyword_emotion result:", res) |
|
if res: |
|
|
|
top_emo = max(res, key=res.get) |
|
mapping = { |
|
"happy": "高興", |
|
"angry": "憤怒", |
|
"sad": "悲傷", |
|
"surprise": "驚訝", |
|
"fear": "恐懼", |
|
"disgust": "厭惡" |
|
} |
|
cn = mapping.get(top_emo, top_emo) |
|
prob = float(res[top_emo]) |
|
print(f"使用規則方法,返回: {{'{cn}': {prob}}}") |
|
return {cn: prob} |
|
|
|
if zero_shot is None: |
|
print("zero_shot pipeline 未加载,返回中性") |
|
return {"中性": 1.0} |
|
try: |
|
out = zero_shot(text, candidate_labels=candidate_labels, |
|
hypothesis_template="这句話表達了{}情緒") |
|
print("zero-shot 返回:", out) |
|
result = {} |
|
for lab, sc in zip(out["labels"], out["scores"]): |
|
cn = label_map_en2cn.get(lab.lower(), lab) |
|
result[cn] = float(sc) |
|
print("zero-shot 结果映射中文:", result) |
|
return result |
|
except Exception as e: |
|
print("zero-shot error:", e) |
|
return {"中性": 1.0} |
|
|
|
|
|
def extract_feature(signal: np.ndarray, sr: int) -> np.ndarray: |
|
mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=13) |
|
return np.concatenate([np.mean(mfcc, axis=1), np.var(mfcc, axis=1)]) |
|
|
|
def predict_voice(audio_path: str): |
|
if not audio_path: |
|
print("predict_voice: 无 audio_path,跳过") |
|
return {} |
|
try: |
|
signal, sr = librosa.load(audio_path, sr=None) |
|
feat = extract_feature(signal, sr) |
|
probs = svm_model.predict_proba([feat])[0] |
|
labels = svm_model.classes_ |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
except Exception as e: |
|
print("predict_voice error:", e) |
|
return {} |
|
|
|
|
|
def predict_face(img: np.ndarray): |
|
print("predict_face called, img is None?", img is None) |
|
if img is None: |
|
return {} |
|
try: |
|
res = DeepFace.analyze(img, actions=["emotion"], detector_backend="opencv") |
|
if isinstance(res, list): |
|
first = res[0] if res else {} |
|
emo = first.get("emotion", {}) if isinstance(first, dict) else {} |
|
else: |
|
emo = res.get("emotion", {}) if isinstance(res, dict) else {} |
|
|
|
emo_fixed = {k: float(v) for k, v in emo.items()} |
|
print("predict_face result:", emo_fixed) |
|
return emo_fixed |
|
except Exception as e: |
|
print("DeepFace.analyze error:", e) |
|
return {} |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## 多模態情緒分析示例") |
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("臉部情緒"): |
|
gr.Markdown("### 臉部情緒 (即時 Webcam Streaming 分析)") |
|
with gr.Row(): |
|
webcam = gr.Image(sources="webcam", streaming=True, type="numpy", label="攝像頭畫面") |
|
face_out = gr.JSON(label="情緒原始結果") |
|
webcam.stream(fn=predict_face, inputs=webcam, outputs=face_out) |
|
|
|
with gr.TabItem("語音情緒"): |
|
gr.Markdown("### 語音情緒 分析") |
|
with gr.Row(): |
|
audio = gr.Audio(sources="microphone", streaming=False, type="filepath", label="錄音") |
|
|
|
voice_out = gr.Label(label="語音情緒結果") |
|
audio.change(fn=predict_voice, inputs=audio, outputs=voice_out) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.TabItem("文字情緒"): |
|
gr.Markdown("### 文字情緒 分析 (规则+zero-shot)") |
|
with gr.Row(): |
|
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…") |
|
text_out = gr.Label(label="文字情緒結果") |
|
btn = gr.Button("分析") |
|
btn.click(fn=predict_text_mixed, inputs=text, outputs=text_out) |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|