Update app.py
Browse files
app.py
CHANGED
@@ -17,58 +17,102 @@ svm_model = joblib.load(model_path)
|
|
17 |
print("SVM model loaded.")
|
18 |
|
19 |
# --- 2. 文本情绪分析:规则+zero-shot ---
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
candidate_labels = ["joy", "sadness", "anger", "fear", "surprise", "disgust"]
|
22 |
label_map_en2cn = {
|
23 |
"joy": "高興", "sadness": "悲傷", "anger": "憤怒",
|
24 |
"fear": "恐懼", "surprise": "驚訝", "disgust": "厭惡"
|
25 |
}
|
|
|
|
|
26 |
emo_keywords = {
|
27 |
"happy": ["開心","快樂","愉快","喜悦","喜悅","歡喜","興奮","高興"],
|
28 |
"angry": ["生氣","憤怒","不爽","發火","火大","氣憤"],
|
29 |
"sad": ["傷心","難過","哭","難受","心酸","憂","悲","哀","痛苦","慘","愁"],
|
30 |
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"],
|
31 |
-
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"]
|
|
|
32 |
}
|
|
|
33 |
negations = ["不","沒","沒有","別","勿","非"]
|
34 |
|
35 |
def keyword_emotion(text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
counts = {emo: 0 for emo in emo_keywords}
|
37 |
for emo, kws in emo_keywords.items():
|
38 |
for w in kws:
|
39 |
-
idx =
|
40 |
if idx != -1:
|
41 |
-
#
|
42 |
neg = False
|
43 |
for neg_word in negations:
|
44 |
plen = len(neg_word)
|
45 |
-
if idx - plen >= 0 and
|
46 |
neg = True
|
47 |
break
|
48 |
if not neg:
|
49 |
counts[emo] += 1
|
|
|
|
|
|
|
50 |
total = sum(counts.values())
|
51 |
if total > 0:
|
52 |
-
|
|
|
53 |
else:
|
54 |
return None
|
55 |
|
56 |
def predict_text_mixed(text: str):
|
|
|
|
|
|
|
|
|
|
|
57 |
if not text or text.strip() == "":
|
|
|
58 |
return {}
|
|
|
59 |
res = keyword_emotion(text)
|
|
|
60 |
if res:
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
cn = mapping.get(top_emo, top_emo)
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
out = zero_shot(text, candidate_labels=candidate_labels,
|
67 |
-
hypothesis_template="
|
|
|
68 |
result = {}
|
69 |
for lab, sc in zip(out["labels"], out["scores"]):
|
70 |
cn = label_map_en2cn.get(lab.lower(), lab)
|
71 |
result[cn] = float(sc)
|
|
|
72 |
return result
|
73 |
except Exception as e:
|
74 |
print("zero-shot error:", e)
|
@@ -133,12 +177,15 @@ with gr.Blocks() as demo:
|
|
133 |
voice_out = gr.Label(label="語音情緒結果")
|
134 |
audio.change(fn=predict_voice, inputs=audio, outputs=voice_out)
|
135 |
# 文字情緒 Tab
|
136 |
-
with gr.
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
demo.launch()
|
|
|
17 |
print("SVM model loaded.")
|
18 |
|
19 |
# --- 2. 文本情绪分析:规则+zero-shot ---
|
20 |
+
try:
|
21 |
+
zero_shot = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
22 |
+
except Exception as e:
|
23 |
+
print("加载 zero-shot pipeline 失败:", e)
|
24 |
+
zero_shot = None
|
25 |
+
|
26 |
candidate_labels = ["joy", "sadness", "anger", "fear", "surprise", "disgust"]
|
27 |
label_map_en2cn = {
|
28 |
"joy": "高興", "sadness": "悲傷", "anger": "憤怒",
|
29 |
"fear": "恐懼", "surprise": "驚訝", "disgust": "厭惡"
|
30 |
}
|
31 |
+
|
32 |
+
# 关键词列表:注意繁简体一致,或可添加两种形式
|
33 |
emo_keywords = {
|
34 |
"happy": ["開心","快樂","愉快","喜悦","喜悅","歡喜","興奮","高興"],
|
35 |
"angry": ["生氣","憤怒","不爽","發火","火大","氣憤"],
|
36 |
"sad": ["傷心","難過","哭","難受","心酸","憂","悲","哀","痛苦","慘","愁"],
|
37 |
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"],
|
38 |
+
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"],
|
39 |
+
"disgust": ["噁心","厭惡","反感"] # 如需“厭惡”等
|
40 |
}
|
41 |
+
# 否定词列表
|
42 |
negations = ["不","沒","沒有","別","勿","非"]
|
43 |
|
44 |
def keyword_emotion(text: str):
|
45 |
+
"""
|
46 |
+
规则方法:扫描 emo_keywords,处理前置否定词。
|
47 |
+
返回 None 或 {} 表示规则未命中;否则返回非空 dict,例如 {'angry': 2, 'sad':1} 或归一化 {'angry':0.67,'sad':0.33}。
|
48 |
+
"""
|
49 |
+
if not text or text.strip() == "":
|
50 |
+
return None
|
51 |
+
text_proc = text.strip() # 中文不需要 lower
|
52 |
counts = {emo: 0 for emo in emo_keywords}
|
53 |
for emo, kws in emo_keywords.items():
|
54 |
for w in kws:
|
55 |
+
idx = text_proc.find(w)
|
56 |
if idx != -1:
|
57 |
+
# 检查前一到两字符是否否定词
|
58 |
neg = False
|
59 |
for neg_word in negations:
|
60 |
plen = len(neg_word)
|
61 |
+
if idx - plen >= 0 and text_proc[idx-plen:idx] == neg_word:
|
62 |
neg = True
|
63 |
break
|
64 |
if not neg:
|
65 |
counts[emo] += 1
|
66 |
+
else:
|
67 |
+
# 若否定,可选择减分或忽略;这里忽略
|
68 |
+
pass
|
69 |
total = sum(counts.values())
|
70 |
if total > 0:
|
71 |
+
# 归一化
|
72 |
+
return {emo: counts[emo] / total for emo in counts if counts[emo] > 0}
|
73 |
else:
|
74 |
return None
|
75 |
|
76 |
def predict_text_mixed(text: str):
|
77 |
+
"""
|
78 |
+
文本情绪分析:先规则,若规则命中返回最高情绪及其比例;否则fallback zero-shot返回多类别分布。
|
79 |
+
返回 dict[str, float],供 Gradio Label 显示。
|
80 |
+
"""
|
81 |
+
print("predict_text_mixed called, text:", repr(text))
|
82 |
if not text or text.strip() == "":
|
83 |
+
print("輸入為空,返回空")
|
84 |
return {}
|
85 |
+
# 规则优先
|
86 |
res = keyword_emotion(text)
|
87 |
+
print("keyword_emotion result:", res)
|
88 |
if res:
|
89 |
+
# 只返回最高项:也可返回完整分布 res
|
90 |
+
top_emo = max(res, key=res.get) # 例如 "angry"
|
91 |
+
mapping = {
|
92 |
+
"happy": "高興",
|
93 |
+
"angry": "憤怒",
|
94 |
+
"sad": "悲傷",
|
95 |
+
"surprise": "驚訝",
|
96 |
+
"fear": "恐懼",
|
97 |
+
"disgust": "厭惡"
|
98 |
+
}
|
99 |
cn = mapping.get(top_emo, top_emo)
|
100 |
+
prob = float(res[top_emo])
|
101 |
+
print(f"使用規則方法,返回: {{'{cn}': {prob}}}")
|
102 |
+
return {cn: prob}
|
103 |
+
# 规则未命中,zero-shot fallback
|
104 |
+
if zero_shot is None:
|
105 |
+
print("zero_shot pipeline 未加载,返回中性")
|
106 |
+
return {"中性": 1.0}
|
107 |
try:
|
108 |
out = zero_shot(text, candidate_labels=candidate_labels,
|
109 |
+
hypothesis_template="这句話表達了{}情緒")
|
110 |
+
print("zero-shot 返回:", out)
|
111 |
result = {}
|
112 |
for lab, sc in zip(out["labels"], out["scores"]):
|
113 |
cn = label_map_en2cn.get(lab.lower(), lab)
|
114 |
result[cn] = float(sc)
|
115 |
+
print("zero-shot 结果映射中文:", result)
|
116 |
return result
|
117 |
except Exception as e:
|
118 |
print("zero-shot error:", e)
|
|
|
177 |
voice_out = gr.Label(label="語音情緒結果")
|
178 |
audio.change(fn=predict_voice, inputs=audio, outputs=voice_out)
|
179 |
# 文字情緒 Tab
|
180 |
+
with gr.Blocks() as demo:
|
181 |
+
with gr.TabItem("文字情緒"):
|
182 |
+
gr.Markdown("### 文字情緒 分析 (规则+zero-shot)")
|
183 |
+
with gr.Row():
|
184 |
+
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…")
|
185 |
+
text_out = gr.Label(label="文字情緒結果")
|
186 |
+
btn = gr.Button("分析")
|
187 |
+
btn.click(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
188 |
+
)
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
demo.launch()
|