Spaces:
Sleeping
Sleeping
File size: 11,783 Bytes
3c887d1 f518116 d15d491 3c887d1 18a753b 3c887d1 ab50d44 3c887d1 6bb6834 3c887d1 ab50d44 3c887d1 f518116 3b1ff0d f518116 18a753b 3b1ff0d 18a753b d15d491 3c887d1 18a753b 3c887d1 6bb6834 3c887d1 3b1ff0d 3c887d1 3b1ff0d 3c887d1 6bb6834 3b1ff0d 3c887d1 6bb6834 3c887d1 3b1ff0d 18a753b d15d491 3b1ff0d 3c887d1 f518116 f8fcf16 e0850fe f518116 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 3b1ff0d f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe f8fcf16 e0850fe 679883b f8fcf16 e0850fe 1747725 e0850fe f8fcf16 b60149b e0850fe f8fcf16 b60149b e0850fe f8fcf16 3c887d1 18a753b 3c887d1 f518116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces # Required for Hugging Face Spaces GPU
import random
import numpy as np
# Set random seeds for reproducibility
def set_random_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Set initial seed
set_random_seed(42)
# Determine the device to use (GPU if available, otherwise CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"FlameF0X/SnowflakeCore-G1-Tiny2",
trust_remote_code=True,
force_download=True,
use_safetensors=True,
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"FlameF0X/SnowflakeCore-G1-Tiny2",
trust_remote_code=True,
force_download=True,
use_safetensors=True,
)
@spaces.GPU # Required decorator for GPU usage in Hugging Face Spaces
def advanced_generate(prompt, max_length=50, temperature=1.0, top_k=50, top_p=0.9,
repetition_penalty=1.1, do_sample=True, seed=None):
"""
Generates text with advanced sampling parameters.
The model and input tensors are moved to the appropriate device (GPU/CPU).
"""
# Set seed if provided
if seed is not None:
set_random_seed(seed)
model.eval()
# Move input_ids to the same device as the model
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
generated = input_ids
with torch.no_grad():
for i in range(max_length):
# Get model outputs
outputs = model(input_ids=generated)
next_token_logits = outputs["logits"][:, -1, :]
# Apply repetition penalty
if repetition_penalty != 1.0:
for token_id in set(generated[0].tolist()):
next_token_logits[0, token_id] /= repetition_penalty
# Apply temperature
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
# Convert logits to probabilities
probs = torch.softmax(next_token_logits, dim=-1)
if do_sample and temperature > 0:
# Apply top-k filtering
if top_k > 0:
top_k_probs, top_k_indices = torch.topk(probs, min(top_k, probs.size(-1)))
probs_filtered = torch.zeros_like(probs)
probs_filtered.scatter_(1, top_k_indices, top_k_probs)
probs = probs_filtered
# Apply top-p (nucleus) filtering
if top_p < 1.0:
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Keep at least one token
sorted_indices_to_remove[0, 0] = False
# Create mask for tokens to remove
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
probs[indices_to_remove] = 0
# Renormalize
probs = probs / probs.sum(dim=-1, keepdim=True)
# Sample from the filtered distribution
next_token_id = torch.multinomial(probs, num_samples=1)
else:
# Greedy decoding
next_token_id = torch.argmax(probs, dim=-1).unsqueeze(-1)
generated = torch.cat((generated, next_token_id), dim=1)
# Check for end of sequence
if next_token_id.item() == tokenizer.eos_token_id:
break
return tokenizer.decode(generated[0], skip_special_tokens=True)
def gradio_generate(prompt, max_length, temperature, top_k, top_p, repetition_penalty, do_sample, seed):
"""
Wrapper function for Gradio interface.
"""
# Convert seed to int if provided, otherwise use random
if seed == "" or seed is None:
seed = random.randint(0, 2**32 - 1)
else:
try:
seed = int(seed)
except ValueError:
seed = random.randint(0, 2**32 - 1)
# Ensure parameters are in valid ranges
max_length = max(1, min(200, int(max_length)))
temperature = max(0.1, min(2.0, float(temperature)))
top_k = max(1, min(100, int(top_k)))
top_p = max(0.1, min(1.0, float(top_p)))
repetition_penalty = max(1.0, min(2.0, float(repetition_penalty)))
return advanced_generate(
prompt=prompt,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
seed=seed
)
# Custom CSS for ultra-compact UI and full width
custom_css = """
.gradio-container {
max-width: 100% !important; /* Changed from 1200px to 100% for full width */
padding: 10px !important;
}
.compact-slider {
margin: 2px 0 !important;
}
.parameter-info {
font-size: 10px;
color: #888;
margin: -8px 0 8px 0 !important;
line-height: 1.1;
padding: 2px 4px;
background: rgba(0,0,0,0.05);
border-radius: 3px;
}
.gradio-group {
padding: 8px !important;
margin: 4px 0 !important;
}
.gradio-textbox {
margin-bottom: 8px !important;
}
.gradio-slider {
margin: 4px 0 !important;
}
.gradio-checkbox {
margin: 4px 0 !important;
}
.gradio-number {
margin: 4px 0 !important;
}
.compact-header {
margin: 0 0 10px 0 !important;
padding: 8px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 8px;
color: white;
}
.control-section {
background: rgba(255,255,255,0.02);
border-radius: 6px;
padding: 8px !important;
margin: 4px 0 !important;
}
"""
# Create the Gradio interface with ultra-compact layout
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="SnowflakeCore Text Generator") as iface:
# Compact header
gr.HTML(f"""
<div class="compact-header">
<h2 style="margin: 0; font-size: 18px;">π₯ SnowflakeCore-G1-Tiny2 | Running on: {device}</h2>
</div>
""")
with gr.Row():
# Left column - Input/Output (60% width)
with gr.Column(scale=6, min_width=400):
prompt_input = gr.Textbox(
lines=4,
placeholder="Enter your prompt here...",
label="π Input Prompt",
show_label=True
)
generate_btn = gr.Button("π Generate", variant="primary", size="sm", scale=1)
output_text = gr.Textbox(
lines=8,
label="β¨ Generated Text",
show_label=True,
interactive=False
)
# Right column - Parameters (40% width)
with gr.Column(scale=4, min_width=300):
gr.HTML("<div style='font-weight: bold; font-size: 14px; margin-bottom: 8px; color: #333;'>βοΈ Parameters</div>")
# Core parameters in compact group
with gr.Group(elem_classes=["control-section"]):
max_length = gr.Slider(10, 2048, value=100, step=5, label="Max Length", elem_classes=["compact-slider"])
gr.HTML("<div class='parameter-info'>π Tokens to generate (10-2048)</div>")
temperature = gr.Slider(0.1, 2.0, value=0.8, step=0.05, label="Temperature", elem_classes=["compact-slider"])
gr.HTML("<div class='parameter-info'>π‘οΈ Creativity: 0.1=focused, 2.0=creative</div>")
# Advanced parameters
with gr.Group(elem_classes=["control-section"]):
top_k = gr.Slider(1, 150, value=50, step=1, label="Top-K", elem_classes=["compact-slider"])
gr.HTML("<div class='parameter-info'>π― Word choice diversity</div>")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P", elem_classes=["compact-slider"])
gr.HTML("<div class='parameter-info'>πͺ Probability cutoff</div>")
repetition_penalty = gr.Slider(1.0, 3.0, value=1.15, step=0.05, label="Rep. Penalty", elem_classes=["compact-slider"])
gr.HTML("<div class='parameter-info'>π Anti-repetition strength</div>")
# Controls row
with gr.Row():
do_sample = gr.Checkbox(value=True, label="Sampling", scale=1)
seed_input = gr.Number(label="Seed", value=None, precision=0, scale=1, minimum=0)
gr.HTML("<div class='parameter-info'>π² Sampling=creative | Seed=reproducible</div>")
# Examples section
gr.HTML("<h3 style='margin-top: 25px; margin-bottom: 10px;'>π‘ Quick Examples</h3>")
examples = gr.Examples(
examples=[
["Once upon a time in a magical forest,", 120, 0.8, 40, 0.9, 1.2, True, 42],
["The future of artificial intelligence is", 80, 1.0, 50, 0.95, 1.1, True, None],
["In a world where technology and nature coexist,", 150, 1.2, 60, 0.85, 1.3, True, 123],
["Write a haiku about winter:", 50, 0.7, 30, 0.8, 1.0, True, None],
["Explain quantum computing in simple terms:", 200, 0.6, 40, 0.9, 1.1, True, None]
],
inputs=[prompt_input, max_length, temperature, top_k, top_p, repetition_penalty, do_sample, seed_input],
outputs=[output_text],
fn=gradio_generate,
cache_examples=False,
label=None
)
# Event handlers
generate_btn.click(
fn=gradio_generate,
inputs=[prompt_input, max_length, temperature, top_k, top_p, repetition_penalty, do_sample, seed_input],
outputs=[output_text]
)
# Tips section
with gr.Accordion("π Parameter Guide & Tips", open=False):
gr.HTML("""
<div style="font-size: 12px; line-height: 1.4;">
<h4>ποΈ Parameter Combinations for Different Use Cases:</h4>
<strong>π Creative Writing:</strong> Temperature: 0.8-1.2, Top-K: 40-60, Top-P: 0.85-0.95, Rep. Penalty: 1.1-1.3<br>
<strong>π Factual/Technical:</strong> Temperature: 0.3-0.7, Top-K: 20-40, Top-P: 0.9-1.0, Rep. Penalty: 1.0-1.1<br>
<strong>π Experimental/Artistic:</strong> Temperature: 1.2-2.0, Top-K: 60-100, Top-P: 0.7-0.9, Rep. Penalty: 1.2-1.5<br>
<strong>π― Focused/Consistent:</strong> Temperature: 0.1-0.5, Top-K: 10-30, Top-P: 0.8-0.95, Rep. Penalty: 1.0-1.2<br><br>
<strong>π‘ Pro Tips:</strong><br>
β’ Use same seed for reproducible results across generations<br>
β’ Higher repetition penalty helps with stuck loops or repeated phrases<br>
β’ Lower temperature + higher top-p = focused but varied vocabulary<br>
β’ Disable sampling for completely deterministic output (useful for testing)<br>
β’ Start with defaults and adjust one parameter at a time to understand effects
</div>
""")
# Launch the Gradio application
if __name__ == "__main__":
iface.launch()
|