File size: 11,783 Bytes
3c887d1
 
 
f518116
d15d491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c887d1
18a753b
 
 
 
3c887d1
 
ab50d44
3c887d1
 
 
6bb6834
 
3c887d1
ab50d44
3c887d1
 
 
 
 
f518116
3b1ff0d
f518116
18a753b
3b1ff0d
18a753b
 
d15d491
 
 
 
3c887d1
18a753b
 
3c887d1
6bb6834
3c887d1
3b1ff0d
 
3c887d1
 
3b1ff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c887d1
6bb6834
3b1ff0d
3c887d1
 
6bb6834
3c887d1
 
3b1ff0d
18a753b
 
 
d15d491
 
 
 
 
 
 
 
 
3b1ff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c887d1
f518116
f8fcf16
e0850fe
f518116
e0850fe
 
 
 
f8fcf16
 
e0850fe
 
 
 
 
 
 
f8fcf16
e0850fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8fcf16
 
 
e0850fe
f8fcf16
e0850fe
 
f8fcf16
e0850fe
 
f8fcf16
 
3b1ff0d
f8fcf16
e0850fe
 
f8fcf16
e0850fe
f8fcf16
e0850fe
 
f8fcf16
 
e0850fe
 
f8fcf16
e0850fe
 
 
 
f8fcf16
 
e0850fe
 
 
f8fcf16
e0850fe
 
679883b
 
f8fcf16
e0850fe
 
 
 
 
1747725
e0850fe
f8fcf16
b60149b
e0850fe
f8fcf16
b60149b
e0850fe
 
 
 
 
 
 
f8fcf16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c887d1
18a753b
3c887d1
f518116
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces # Required for Hugging Face Spaces GPU
import random
import numpy as np

# Set random seeds for reproducibility
def set_random_seed(seed=42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

# Set initial seed
set_random_seed(42)

# Determine the device to use (GPU if available, otherwise CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "FlameF0X/SnowflakeCore-G1-Tiny2",
    trust_remote_code=True,
    force_download=True,
    use_safetensors=True,
).to(device)

tokenizer = AutoTokenizer.from_pretrained(
    "FlameF0X/SnowflakeCore-G1-Tiny2",
    trust_remote_code=True,
    force_download=True,
    use_safetensors=True,
)

@spaces.GPU # Required decorator for GPU usage in Hugging Face Spaces
def advanced_generate(prompt, max_length=50, temperature=1.0, top_k=50, top_p=0.9, 
                      repetition_penalty=1.1, do_sample=True, seed=None):
    """
    Generates text with advanced sampling parameters.
    The model and input tensors are moved to the appropriate device (GPU/CPU).
    """
    # Set seed if provided
    if seed is not None:
        set_random_seed(seed)
    
    model.eval()
    # Move input_ids to the same device as the model
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
    generated = input_ids
    
    with torch.no_grad():
        for i in range(max_length):
            # Get model outputs
            outputs = model(input_ids=generated)
            next_token_logits = outputs["logits"][:, -1, :]
            
            # Apply repetition penalty
            if repetition_penalty != 1.0:
                for token_id in set(generated[0].tolist()):
                    next_token_logits[0, token_id] /= repetition_penalty
            
            # Apply temperature
            if temperature != 1.0:
                next_token_logits = next_token_logits / temperature
            
            # Convert logits to probabilities
            probs = torch.softmax(next_token_logits, dim=-1)
            
            if do_sample and temperature > 0:
                # Apply top-k filtering
                if top_k > 0:
                    top_k_probs, top_k_indices = torch.topk(probs, min(top_k, probs.size(-1)))
                    probs_filtered = torch.zeros_like(probs)
                    probs_filtered.scatter_(1, top_k_indices, top_k_probs)
                    probs = probs_filtered
                
                # Apply top-p (nucleus) filtering
                if top_p < 1.0:
                    sorted_probs, sorted_indices = torch.sort(probs, descending=True)
                    cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
                    
                    # Remove tokens with cumulative probability above the threshold
                    sorted_indices_to_remove = cumulative_probs > top_p
                    # Keep at least one token
                    sorted_indices_to_remove[0, 0] = False
                    
                    # Create mask for tokens to remove
                    indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                    probs[indices_to_remove] = 0
                    
                    # Renormalize
                    probs = probs / probs.sum(dim=-1, keepdim=True)
                
                # Sample from the filtered distribution
                next_token_id = torch.multinomial(probs, num_samples=1)
            else:
                # Greedy decoding
                next_token_id = torch.argmax(probs, dim=-1).unsqueeze(-1)
            
            generated = torch.cat((generated, next_token_id), dim=1)
            
            # Check for end of sequence
            if next_token_id.item() == tokenizer.eos_token_id:
                break
                
    return tokenizer.decode(generated[0], skip_special_tokens=True)

def gradio_generate(prompt, max_length, temperature, top_k, top_p, repetition_penalty, do_sample, seed):
    """
    Wrapper function for Gradio interface.
    """
    # Convert seed to int if provided, otherwise use random
    if seed == "" or seed is None:
        seed = random.randint(0, 2**32 - 1)
    else:
        try:
            seed = int(seed)
        except ValueError:
            seed = random.randint(0, 2**32 - 1)
    
    # Ensure parameters are in valid ranges
    max_length = max(1, min(200, int(max_length)))
    temperature = max(0.1, min(2.0, float(temperature)))
    top_k = max(1, min(100, int(top_k)))
    top_p = max(0.1, min(1.0, float(top_p)))
    repetition_penalty = max(1.0, min(2.0, float(repetition_penalty)))
    
    return advanced_generate(
        prompt=prompt,
        max_length=max_length,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=do_sample,
        seed=seed
    )

# Custom CSS for ultra-compact UI and full width
custom_css = """
.gradio-container {
    max-width: 100% !important; /* Changed from 1200px to 100% for full width */
    padding: 10px !important;
}
.compact-slider {
    margin: 2px 0 !important;
}
.parameter-info {
    font-size: 10px;
    color: #888;
    margin: -8px 0 8px 0 !important;
    line-height: 1.1;
    padding: 2px 4px;
    background: rgba(0,0,0,0.05);
    border-radius: 3px;
}
.gradio-group {
    padding: 8px !important;
    margin: 4px 0 !important;
}
.gradio-textbox {
    margin-bottom: 8px !important;
}
.gradio-slider {
    margin: 4px 0 !important;
}
.gradio-checkbox {
    margin: 4px 0 !important;
}
.gradio-number {
    margin: 4px 0 !important;
}
.compact-header {
    margin: 0 0 10px 0 !important;
    padding: 8px !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    border-radius: 8px;
    color: white;
}
.control-section {
    background: rgba(255,255,255,0.02);
    border-radius: 6px;
    padding: 8px !important;
    margin: 4px 0 !important;
}
"""

# Create the Gradio interface with ultra-compact layout
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="SnowflakeCore Text Generator") as iface:
    
    # Compact header
    gr.HTML(f"""
    <div class="compact-header">
        <h2 style="margin: 0; font-size: 18px;">πŸ”₯ SnowflakeCore-G1-Tiny2 | Running on: {device}</h2>
    </div>
    """)
    
    with gr.Row():
        # Left column - Input/Output (60% width)
        with gr.Column(scale=6, min_width=400):
            prompt_input = gr.Textbox(
                lines=4, 
                placeholder="Enter your prompt here...", 
                label="πŸ“ Input Prompt",
                show_label=True
            )
            
            generate_btn = gr.Button("πŸš€ Generate", variant="primary", size="sm", scale=1)
            
            output_text = gr.Textbox(
                lines=8, 
                label="✨ Generated Text",
                show_label=True,
                interactive=False
            )
        
        # Right column - Parameters (40% width)  
        with gr.Column(scale=4, min_width=300):
            gr.HTML("<div style='font-weight: bold; font-size: 14px; margin-bottom: 8px; color: #333;'>βš™οΈ Parameters</div>")
            
            # Core parameters in compact group
            with gr.Group(elem_classes=["control-section"]):
                max_length = gr.Slider(10, 2048, value=100, step=5, label="Max Length", elem_classes=["compact-slider"])
                gr.HTML("<div class='parameter-info'>πŸ“ Tokens to generate (10-2048)</div>")
                
                temperature = gr.Slider(0.1, 2.0, value=0.8, step=0.05, label="Temperature", elem_classes=["compact-slider"])
                gr.HTML("<div class='parameter-info'>🌑️ Creativity: 0.1=focused, 2.0=creative</div>")
            
            # Advanced parameters  
            with gr.Group(elem_classes=["control-section"]):
                top_k = gr.Slider(1, 150, value=50, step=1, label="Top-K", elem_classes=["compact-slider"])
                gr.HTML("<div class='parameter-info'>🎯 Word choice diversity</div>")
                
                top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P", elem_classes=["compact-slider"])
                gr.HTML("<div class='parameter-info'>πŸŽͺ Probability cutoff</div>")
                
                repetition_penalty = gr.Slider(1.0, 3.0, value=1.15, step=0.05, label="Rep. Penalty", elem_classes=["compact-slider"])
                gr.HTML("<div class='parameter-info'>πŸ”„ Anti-repetition strength</div>")
            
            # Controls row
            with gr.Row():
                do_sample = gr.Checkbox(value=True, label="Sampling", scale=1)
                seed_input = gr.Number(label="Seed", value=None, precision=0, scale=1, minimum=0)
            gr.HTML("<div class='parameter-info'>🎲 Sampling=creative | Seed=reproducible</div>")
    
    # Examples section
    gr.HTML("<h3 style='margin-top: 25px; margin-bottom: 10px;'>πŸ’‘ Quick Examples</h3>")
    
    examples = gr.Examples(
        examples=[
            ["Once upon a time in a magical forest,", 120, 0.8, 40, 0.9, 1.2, True, 42],
            ["The future of artificial intelligence is", 80, 1.0, 50, 0.95, 1.1, True, None],
            ["In a world where technology and nature coexist,", 150, 1.2, 60, 0.85, 1.3, True, 123],
            ["Write a haiku about winter:", 50, 0.7, 30, 0.8, 1.0, True, None],
            ["Explain quantum computing in simple terms:", 200, 0.6, 40, 0.9, 1.1, True, None]
        ],
        inputs=[prompt_input, max_length, temperature, top_k, top_p, repetition_penalty, do_sample, seed_input],
        outputs=[output_text],
        fn=gradio_generate,
        cache_examples=False,
        label=None
    )
    
    # Event handlers
    generate_btn.click(
        fn=gradio_generate,
        inputs=[prompt_input, max_length, temperature, top_k, top_p, repetition_penalty, do_sample, seed_input],
        outputs=[output_text]
    )
    
    # Tips section
    with gr.Accordion("πŸ“š Parameter Guide & Tips", open=False):
        gr.HTML("""
        <div style="font-size: 12px; line-height: 1.4;">
        <h4>πŸŽ›οΈ Parameter Combinations for Different Use Cases:</h4>
        
        <strong>πŸ“ Creative Writing:</strong> Temperature: 0.8-1.2, Top-K: 40-60, Top-P: 0.85-0.95, Rep. Penalty: 1.1-1.3<br>
        <strong>πŸ“‹ Factual/Technical:</strong> Temperature: 0.3-0.7, Top-K: 20-40, Top-P: 0.9-1.0, Rep. Penalty: 1.0-1.1<br>
        <strong>🎭 Experimental/Artistic:</strong> Temperature: 1.2-2.0, Top-K: 60-100, Top-P: 0.7-0.9, Rep. Penalty: 1.2-1.5<br>
        <strong>🎯 Focused/Consistent:</strong> Temperature: 0.1-0.5, Top-K: 10-30, Top-P: 0.8-0.95, Rep. Penalty: 1.0-1.2<br><br>
        
        <strong>πŸ’‘ Pro Tips:</strong><br>
        β€’ Use same seed for reproducible results across generations<br>
        β€’ Higher repetition penalty helps with stuck loops or repeated phrases<br>
        β€’ Lower temperature + higher top-p = focused but varied vocabulary<br>
        β€’ Disable sampling for completely deterministic output (useful for testing)<br>
        β€’ Start with defaults and adjust one parameter at a time to understand effects
        </div>
        """)

# Launch the Gradio application
if __name__ == "__main__":
    iface.launch()