Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,18 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
5 |
# Load model and tokenizer
|
|
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
7 |
"FlameF0X/SnowflakeCore-G1-Tiny2",
|
8 |
trust_remote_code=True,
|
9 |
force_download=True,
|
10 |
use_safetensors=True,
|
11 |
-
)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(
|
13 |
"FlameF0X/SnowflakeCore-G1-Tiny2",
|
14 |
trust_remote_code=True,
|
@@ -17,11 +22,17 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
17 |
)
|
18 |
|
19 |
def custom_greedy_generate(prompt, max_length=50):
|
|
|
|
|
|
|
|
|
20 |
model.eval()
|
21 |
-
input_ids
|
|
|
22 |
generated = input_ids
|
23 |
with torch.no_grad():
|
24 |
for _ in range(max_length):
|
|
|
25 |
outputs = model(input_ids=generated)
|
26 |
next_token_logits = outputs["logits"][:, -1, :]
|
27 |
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
|
@@ -31,15 +42,20 @@ def custom_greedy_generate(prompt, max_length=50):
|
|
31 |
return tokenizer.decode(generated[0], skip_special_tokens=True)
|
32 |
|
33 |
def gradio_generate(prompt):
|
|
|
|
|
|
|
34 |
return custom_greedy_generate(prompt)
|
35 |
|
|
|
36 |
iface = gr.Interface(
|
37 |
fn=gradio_generate,
|
38 |
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
39 |
outputs=gr.Textbox(label="Generated Text"),
|
40 |
title="SnowflakeCore-G1-Tiny2 Text Generation",
|
41 |
-
description="Enter a prompt and generate text using the SnowflakeCore-G1-Tiny2 model.",
|
42 |
)
|
43 |
|
|
|
44 |
if __name__ == "__main__":
|
45 |
-
iface.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
# Determine the device to use (GPU if available, otherwise CPU)
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
print(f"Using device: {device}")
|
8 |
+
|
9 |
# Load model and tokenizer
|
10 |
+
# Move the model to the determined device
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
"FlameF0X/SnowflakeCore-G1-Tiny2",
|
13 |
trust_remote_code=True,
|
14 |
force_download=True,
|
15 |
use_safetensors=True,
|
16 |
+
).to(device) # Move model to GPU or CPU
|
17 |
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
"FlameF0X/SnowflakeCore-G1-Tiny2",
|
19 |
trust_remote_code=True,
|
|
|
22 |
)
|
23 |
|
24 |
def custom_greedy_generate(prompt, max_length=50):
|
25 |
+
"""
|
26 |
+
Generates text using a custom greedy decoding approach.
|
27 |
+
The model and input tensors are moved to the appropriate device (GPU/CPU).
|
28 |
+
"""
|
29 |
model.eval()
|
30 |
+
# Move input_ids to the same device as the model
|
31 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
32 |
generated = input_ids
|
33 |
with torch.no_grad():
|
34 |
for _ in range(max_length):
|
35 |
+
# Ensure the generated tensor is on the correct device for model input
|
36 |
outputs = model(input_ids=generated)
|
37 |
next_token_logits = outputs["logits"][:, -1, :]
|
38 |
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
|
|
|
42 |
return tokenizer.decode(generated[0], skip_special_tokens=True)
|
43 |
|
44 |
def gradio_generate(prompt):
|
45 |
+
"""
|
46 |
+
Wrapper function for Gradio interface.
|
47 |
+
"""
|
48 |
return custom_greedy_generate(prompt)
|
49 |
|
50 |
+
# Create the Gradio interface
|
51 |
iface = gr.Interface(
|
52 |
fn=gradio_generate,
|
53 |
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
54 |
outputs=gr.Textbox(label="Generated Text"),
|
55 |
title="SnowflakeCore-G1-Tiny2 Text Generation",
|
56 |
+
description=f"Enter a prompt and generate text using the SnowflakeCore-G1-Tiny2 model. Running on: {device}",
|
57 |
)
|
58 |
|
59 |
+
# Launch the Gradio application
|
60 |
if __name__ == "__main__":
|
61 |
+
iface.launch()
|