File size: 2,720 Bytes
a6d0889
 
 
 
 
 
 
 
 
 
a426736
a6d0889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np

#data directories

DATADIR  = "your data dir"
CATEGORIES = ["sfw", "nsfw"]

for category in CATEGORIES:
    path = os.path.join(DATADIR, category) #path to sfw and nfsw dir
    for img in os.listdir(path):
        img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
        plt.imshow(img_array, cmap ="gray")
        plt.show()
        break
    break


# In[2]:


print (img_array).shape


# In[3]:


IMG_SIZE = 80
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
plt.imshow(new_array, cmap = 'gray')
plt.show()


# In[4]:


training_data = []
def create_training_data():
    for category in  CATEGORIES:
        path = os.path.join(DATADIR, category) #path to sfw and nsfw
        class_num = CATEGORIES.index(category)
        for img in os.listdir(path):
            try:
                img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
                new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
                training_data.append([new_array, class_num])
            except Exception as e:
                pass
            
        
create_training_data()


# In[5]:


print(len(training_data))


# In[6]:


import random 
random.shuffle(training_data)


# In[7]:


for sample in training_data[:10]:
    print(sample[1])


# In[8]:


X = []
y = []



# In[9]:


for features, label in training_data:
    X.append(features)
    y.append(label)
    
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)


# In[10]:


import pickle

pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out.close()

pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()


# In[11]:


pickle_in = open("X.pickle", "rb")
X =  pickle.load(pickle_in)
                 


# In[13]:


X[1]


# In[14]:


import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
import pickle

X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))

X = X/255.0
y = np.array(y)

model = Sequential()
model.add(Conv2D(64, (3,3), input_shape = X.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Conv2D(64, (3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Flatten())
model.add(Dense(64))

model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss="binary_crossentropy", 
             optimizer="adam",
             metrics=['accuracy'])

model.fit(X, y, batch_size=8, epochs=8, validation_split=0.1)