Spaces:
Build error
Build error
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import tensorflow as tf
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import cv2
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
#data directories
|
10 |
+
|
11 |
+
DATADIR = "/home/spidy/Documents/RJIT/PicData"
|
12 |
+
CATEGORIES = ["sfw", "nsfw"]
|
13 |
+
|
14 |
+
for category in CATEGORIES:
|
15 |
+
path = os.path.join(DATADIR, category) #path to sfw and nfsw dir
|
16 |
+
for img in os.listdir(path):
|
17 |
+
img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
|
18 |
+
plt.imshow(img_array, cmap ="gray")
|
19 |
+
plt.show()
|
20 |
+
break
|
21 |
+
break
|
22 |
+
|
23 |
+
|
24 |
+
# In[2]:
|
25 |
+
|
26 |
+
|
27 |
+
print (img_array).shape
|
28 |
+
|
29 |
+
|
30 |
+
# In[3]:
|
31 |
+
|
32 |
+
|
33 |
+
IMG_SIZE = 80
|
34 |
+
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
|
35 |
+
plt.imshow(new_array, cmap = 'gray')
|
36 |
+
plt.show()
|
37 |
+
|
38 |
+
|
39 |
+
# In[4]:
|
40 |
+
|
41 |
+
|
42 |
+
training_data = []
|
43 |
+
def create_training_data():
|
44 |
+
for category in CATEGORIES:
|
45 |
+
path = os.path.join(DATADIR, category) #path to sfw and nsfw
|
46 |
+
class_num = CATEGORIES.index(category)
|
47 |
+
for img in os.listdir(path):
|
48 |
+
try:
|
49 |
+
img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
|
50 |
+
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
|
51 |
+
training_data.append([new_array, class_num])
|
52 |
+
except Exception as e:
|
53 |
+
pass
|
54 |
+
|
55 |
+
|
56 |
+
create_training_data()
|
57 |
+
|
58 |
+
|
59 |
+
# In[5]:
|
60 |
+
|
61 |
+
|
62 |
+
print(len(training_data))
|
63 |
+
|
64 |
+
|
65 |
+
# In[6]:
|
66 |
+
|
67 |
+
|
68 |
+
import random
|
69 |
+
random.shuffle(training_data)
|
70 |
+
|
71 |
+
|
72 |
+
# In[7]:
|
73 |
+
|
74 |
+
|
75 |
+
for sample in training_data[:10]:
|
76 |
+
print(sample[1])
|
77 |
+
|
78 |
+
|
79 |
+
# In[8]:
|
80 |
+
|
81 |
+
|
82 |
+
X = []
|
83 |
+
y = []
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# In[9]:
|
88 |
+
|
89 |
+
|
90 |
+
for features, label in training_data:
|
91 |
+
X.append(features)
|
92 |
+
y.append(label)
|
93 |
+
|
94 |
+
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
|
95 |
+
|
96 |
+
|
97 |
+
# In[10]:
|
98 |
+
|
99 |
+
|
100 |
+
import pickle
|
101 |
+
|
102 |
+
pickle_out = open("X.pickle", "wb")
|
103 |
+
pickle.dump(X, pickle_out)
|
104 |
+
pickle_out.close()
|
105 |
+
|
106 |
+
pickle_out = open("y.pickle", "wb")
|
107 |
+
pickle.dump(y, pickle_out)
|
108 |
+
pickle_out.close()
|
109 |
+
|
110 |
+
|
111 |
+
# In[11]:
|
112 |
+
|
113 |
+
|
114 |
+
pickle_in = open("X.pickle", "rb")
|
115 |
+
X = pickle.load(pickle_in)
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
# In[13]:
|
120 |
+
|
121 |
+
|
122 |
+
X[1]
|
123 |
+
|
124 |
+
|
125 |
+
# In[14]:
|
126 |
+
|
127 |
+
|
128 |
+
import tensorflow as tf
|
129 |
+
from tensorflow.keras.models import Sequential
|
130 |
+
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
|
131 |
+
import pickle
|
132 |
+
|
133 |
+
X = pickle.load(open("X.pickle", "rb"))
|
134 |
+
y = pickle.load(open("y.pickle", "rb"))
|
135 |
+
|
136 |
+
X = X/255.0
|
137 |
+
y = np.array(y)
|
138 |
+
|
139 |
+
model = Sequential()
|
140 |
+
model.add(Conv2D(64, (3,3), input_shape = X.shape[1:]))
|
141 |
+
model.add(Activation("relu"))
|
142 |
+
model.add(MaxPooling2D(pool_size = (2, 2)))
|
143 |
+
|
144 |
+
model.add(Conv2D(64, (3,3)))
|
145 |
+
model.add(Activation("relu"))
|
146 |
+
model.add(MaxPooling2D(pool_size = (2, 2)))
|
147 |
+
|
148 |
+
model.add(Flatten())
|
149 |
+
model.add(Dense(64))
|
150 |
+
|
151 |
+
model.add(Dense(1))
|
152 |
+
model.add(Activation('sigmoid'))
|
153 |
+
|
154 |
+
model.compile(loss="binary_crossentropy",
|
155 |
+
optimizer="adam",
|
156 |
+
metrics=['accuracy'])
|
157 |
+
|
158 |
+
model.fit(X, y, batch_size=8, epochs=8, validation_split=0.1)
|
159 |
+
|
160 |
+
|