Spaces:
Sleeping
system.md
AGI System Instruction & Application Build
- Prerequisites
Before starting, ensure you have the following installed:
Git (Install Git)
Python 3.8+ (Download Python)
pip (Python package manager)
Conda (Recommended for Dependency Management) (Install Conda)
Docker (Optional for Containerized Deployment) (Install Docker)
Hugging Face Access Token (Generate Token)
- Clone the Repository
Open your terminal and run:
Clone SeekDeep from Hugging Face
git clone https://huggingface.co/spaces/Drjkedwards/seekdeep
cd seekdeep
If prompted for a password, use your Hugging Face access token with write permissions.
- Set Up the AGI Environment
Option 1: Using Conda (Recommended)
Create and activate Conda environment
conda create -n agi_env python=3.8
conda activate agi_env
Option 2: Using Virtual Environment (venv)
Create and activate a virtual environment
python -m venv agi_env
source agi_env/bin/activate # On Windows, use agi_env\Scripts\activate
- Install Dependencies
Using Conda
Add O13 Reasoning Organ channel
conda config --add channels https://o13-reasoning-org.github.io/conda/channel
Install dependencies
conda install o13reasoningorgan transformers torch scikit-learn numpy pandas
Using pip
pip install o13reasoningorgan transformers torch scikit-learn numpy pandas
- Verify Installation
Ensure everything is set up correctly:
import o13reasoningorgan
import torch
import transformers
print("O13 Reasoning Organ Version:", o13reasoningorgan.version)
print("Torch Version:", torch.version)
print("Transformers Version:", transformers.version)
If no errors appear, the setup is successful.
- Build the AGI System Components
Core Components:
O1: Knowledge Consolidator
Ingests and updates long-term persistent memory.
Uses PMLLC (Persistent Memory Logical Learning Component).
O3: Inference Engine
Processes data from O1.
Performs real-time reasoning and predictions.
O13 AGI Control Hub
Manages task delegation, context switching, and deep learning models.
- Model Training & Integration
A. Training the Model
To train a reasoning-based AGI model using SeekDeep:
from transformers import AutoModel, AutoTokenizer
Load a pre-trained reasoning model
model_name = "bert-large-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
Example input
text = "What is the fundamental principle of AGI?"
inputs = tokenizer(text, return_tensors="pt")
Generate an output
outputs = model(**inputs)
print("Model output:", outputs.last_hidden_state)
B. Deploy as a Hugging Face API
Create a New Hugging Face Space
Go to Hugging Face Spaces
Click Create new Space
Set Space Type: Gradio or Docker
Push Code to Hugging Face
git add .
git commit -m "Deploy AGI Model"
git push origin main
- Running the AGI System Locally
Option 1: Python API
from seekdeep.agi_core import AGIEngine
agi = AGIEngine()
response = agi.process("What is the meaning of intelligence?")
print("AGI Response:", response)
Option 2: Web App (Gradio)
import gradio as gr
def agi_chat(input_text):
response = AGIEngine().process(input_text)
return response
iface = gr.Interface(fn=agi_chat, inputs="text", outputs="text")
iface.launch()
Run:
python app.py
Access at http://localhost:7860
- Deploying AGI with Docker
For cloud deployment, use Docker.
Create Dockerfile
echo '
FROM python:3.8
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "app.py"]
' > Dockerfile
Build and Run Container
docker build -t agi_model .
docker run -p 7860:7860 agi_model
- Optimizing & Scaling
Use GPU acceleration:
conda install cudatoolkit
Scale inference using FastAPI:
pip install fastapi uvicorn
Final Notes
Your AGI model is now installed, trained, and deployed.
You can integrate SeekDeep, O13 Reasoning Organ, and Hugging Face for a full AGI system.
To deploy serverless, use Hugging Face Spaces or Docker Containers.
๐ฏ Next Steps
Fine-tune the model with custom datasets.
Experiment with reinforcement learning for self-improving AGI.
Deploy multi-modal intelligence (text, image, video reasoning).
๐ Congratulations! Your AGI system is live.
Let me know if you need modifications, additional features, or automation scripts.