Spaces:
Running
Running
File size: 26,423 Bytes
f96f6d4 1191303 a127037 ec7ddd1 32575e3 ec7ddd1 493df63 ec7ddd1 9e516eb ae9100f 32575e3 9e093d3 bbdd34f 4f70893 584bb82 ccf98cc 5f50b04 bbdd34f 99973bd bbdd34f ae9100f ec7ddd1 584bb82 ec7ddd1 584bb82 ec7ddd1 584bb82 ec7ddd1 99973bd ae9100f 584bb82 e44d3c0 584bb82 3570753 ec7ddd1 3570753 ec7ddd1 3570753 32575e3 cd866dd 3570753 32575e3 3570753 ec7ddd1 ae9100f ec7ddd1 32575e3 ec7ddd1 ae9100f ec7ddd1 32575e3 ec7ddd1 2fc3cdf e14555c 32575e3 584bb82 ae9100f 32575e3 ae9100f ec7ddd1 64276e8 879297f ec7ddd1 879297f ec7ddd1 879297f ec7ddd1 879297f 64276e8 7986235 32575e3 7986235 721c955 bf5580a 721c955 bf5580a 721c955 7986235 12a118d 7986235 64276e8 32575e3 62835ea 32575e3 ec7ddd1 bbdd34f 584bb82 cfa79bc 584bb82 bbdd34f 99973bd fab9fe6 584bb82 65212c0 584bb82 65212c0 584bb82 fab9fe6 99973bd 584bb82 65212c0 c375485 584bb82 c375485 584bb82 65212c0 cf28062 99973bd bbdd34f a97c223 bbdd34f 584bb82 cf28062 bbdd34f a97c223 bbdd34f 99973bd bbdd34f 99973bd cf28062 99973bd bbdd34f ae885de 99973bd ae885de 99973bd a97c223 bbdd34f 99973bd bbdd34f e49cf2a a3a81b8 e49cf2a 7a0f264 e49cf2a a3a81b8 7a0f264 e49cf2a ca3e624 32575e3 a3a81b8 7bd7b3e 39ae944 f1929af 117de7f f1929af 32575e3 4aad40a ec7ddd1 3ed92ae ec7ddd1 b4411fc 32575e3 ec7ddd1 5158cbc 40c5626 6f27960 40c5626 6f27960 89636c2 6f27960 4aad40a 313e06c e7700bd 16cee10 313e06c 32575e3 c1edf87 32575e3 b4411fc c1edf87 32575e3 4aad40a 32575e3 bbdd34f 83a14c7 fe9db7b e7700bd fe9db7b bbdd34f fe9db7b bbdd34f cfa79bc 24bcaf3 83a14c7 24bcaf3 cfa79bc a01ba73 24bcaf3 a01ba73 24bcaf3 a01ba73 cfa79bc bbdd34f 4aad40a 313e06c e7700bd 16cee10 c1edf87 bbdd34f c1edf87 7986235 b4411fc c1edf87 f485f55 c1edf87 32575e3 c1edf87 32575e3 5158cbc b8557eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
# add support for multiple pdf/pdf urls + audio query + generate qa audio
# include - key features of the app + limitations + future work + workflow diagram + sample outputs
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz
import chromadb
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz
from langgraph.graph import StateGraph, START, END, add_messages
from langgraph.constants import Send
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, SystemMessage, AnyMessage
from pydantic import BaseModel
from typing import List, Annotated, Any
import re, operator
chromadb.api.client.SharedSystemClient.clear_system_cache()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
class MultiAgentState(BaseModel):
state: List[str] = []
messages: Annotated[list[AnyMessage], add_messages]
topic: List[str] = []
context: List[str] = []
sub_topic_list: List[str] = []
sub_topics: Annotated[list[AnyMessage], add_messages]
stories: Annotated[list[AnyMessage], add_messages]
stories_lst: Annotated[list, operator.add]
class StoryState(BaseModel):
retrieved_docs: List[Any] = []
reranked_docs: List[str] = []
stories: Annotated[list[AnyMessage], add_messages]
story_topic: str = ""
stories_lst: Annotated[list, operator.add]
class DocumentRAG:
def __init__(self, embedding_choice="OpenAI"):
self.document_store = None
self.qa_chain = None
self.document_summary = ""
self.chat_history = []
self.last_processed_time = None
self.api_key = os.getenv("OPENAI_API_KEY")
self.init_time = datetime.now(pytz.UTC)
self.embedding_choice = embedding_choice
# Set up appropriate LLM
if self.embedding_choice == "Cohere":
from langchain_cohere import ChatCohere
import cohere
self.llm = ChatCohere(
model="command-r-plus-08-2024",
temperature=0.7,
cohere_api_key=os.getenv("COHERE_API_KEY")
)
self.cohere_client = cohere.Client(os.getenv("COHERE_API_KEY"))
else:
self.llm = ChatOpenAI(
model_name="gpt-4",
temperature=0.7,
api_key=self.api_key
)
# Persistent directory for Chroma
self.chroma_persist_dir = "./chroma_storage"
os.makedirs(self.chroma_persist_dir, exist_ok=True)
def _get_embedding_model(self):
if not self.api_key:
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
if self.embedding_choice == "OpenAI":
return OpenAIEmbeddings(api_key=self.api_key)
else:
from langchain.embeddings import CohereEmbeddings
return CohereEmbeddings(
model="embed-multilingual-light-v3.0",
cohere_api_key=os.getenv("COHERE_API_KEY")
)
def process_documents(self, uploaded_files):
"""Process uploaded files by saving them temporarily and extracting content."""
if not self.api_key:
return "Please set the OpenAI API key in the environment variables."
if not uploaded_files:
return "Please upload documents first."
try:
documents = []
for uploaded_file in uploaded_files:
# Save uploaded file to a temporary location
temp_file_path = tempfile.NamedTemporaryFile(
delete=False, suffix=os.path.splitext(uploaded_file.name)[1]
).name
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
# Determine the loader based on the file type
if temp_file_path.endswith('.pdf'):
loader = PyPDFLoader(temp_file_path)
elif temp_file_path.endswith('.txt'):
loader = TextLoader(temp_file_path)
elif temp_file_path.endswith('.csv'):
loader = CSVLoader(temp_file_path)
else:
return f"Unsupported file type: {uploaded_file.name}"
# Load the documents
try:
documents.extend(loader.load())
except Exception as e:
return f"Error loading {uploaded_file.name}: {str(e)}"
if not documents:
return "No valid documents were processed. Please check your files."
# Split text for better processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
# Combine text for later summary generation
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use
# Create embeddings and initialize retrieval chain
embeddings = self._get_embedding_model()
self.document_store = Chroma.from_documents(
documents,
embeddings,
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
self.document_store.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
self.last_processed_time = datetime.now(pytz.UTC)
return "Documents processed successfully!"
except Exception as e:
return f"Error processing documents: {str(e)}"
def generate_summary(self, text, language):
"""Generate a structured summary from all chunks of the document."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
# Split into chunks
chunks = [text[i:i + 3000] for i in range(0, len(text), 3000)]
summaries = []
for i, chunk in enumerate(chunks):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
You are a scientific summarization assistant.
Summarize the input below in {language} in a structured format, covering:
- Abstract (if present)
- Key Contributions
- Results/Findings
- Conclusion
- Limitations
- Future Work
If any section is missing, just skip it. Keep the language clear and concise.
"""},
{"role": "user", "content": chunk}
],
temperature=0.4
)
content = response.choices[0].message.content.strip()
summaries.append(f"### Part {i+1}\n{content}")
full_summary = "\n\n".join(summaries)
return full_summary
except Exception as e:
return f"Error generating summary: {str(e)}"
def create_podcast(self, language):
"""Generate a podcast script and audio based on doc summary in the specified language."""
if not self.document_summary:
return "Please process documents before generating a podcast.", None
if not self.api_key:
return "Please set the OpenAI API key in the environment variables.", None
try:
client = OpenAI(api_key=self.api_key)
# Generate podcast script
script_response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
You are a professional podcast producer. Create a 1-2 minute structured podcast dialogue in {language}
based on the provided document summary. Follow this flow:
1. Brief Introduction of the Topic
2. Highlight the limitations of existing methods, the key contributions of the research paper, and its advantages over the current state of the art.
3. Discuss Limitations of the research work.
4. Present the Conclusion
5. Mention Future Work
Clearly label the dialogue as 'Host 1:' and 'Host 2:'. Maintain a tone that is engaging, conversational,
and insightful, while ensuring the flow remains logical and natural. Include a well-structured opening
to introduce the topic and a clear, thoughtful closing that provides a smooth conclusion, avoiding any
abrupt endings."""
},
{"role": "user", "content": f"""
Document Summary: {self.document_summary}"""}
],
temperature=0.7
)
script = script_response.choices[0].message.content
if not script:
return "Error: Failed to generate podcast script.", None
# Convert script to audio
final_audio = AudioSegment.empty()
is_first_speaker = True
lines = [line.strip() for line in script.split("\n") if line.strip()]
for line in lines:
if ":" not in line:
continue
speaker, text = line.split(":", 1)
if not text.strip():
continue
try:
voice = "nova" if is_first_speaker else "onyx"
audio_response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text.strip()
)
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_response.stream_to_file(temp_audio_file.name)
segment = AudioSegment.from_file(temp_audio_file.name)
final_audio += segment
final_audio += AudioSegment.silent(duration=300)
is_first_speaker = not is_first_speaker
except Exception as e:
print(f"Error generating audio for line: {text}")
print(f"Details: {e}")
continue
if len(final_audio) == 0:
return "Error: No audio could be generated.", None
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
final_audio.export(output_file, format="mp3")
return script, output_file
except Exception as e:
return f"Error generating podcast: {str(e)}", None
def handle_query(self, question, history, language):
"""Handle user queries in the specified language."""
if not self.qa_chain:
return history + [("System", "Please process the documents first.")]
try:
preface = (
f"Instruction: Respond in {language}. Be professional and concise, "
f"keeping the response under 300 words. If you cannot provide an answer, say: "
f'"I am not sure about this question. Please try asking something else."'
)
query = f"{preface}\nQuery: {question}"
result = self.qa_chain({
"question": query,
"chat_history": [(q, a) for q, a in history]
})
if "answer" not in result:
return history + [("System", "Sorry, an error occurred.")]
history.append((question, result["answer"]))
return history
except Exception as e:
return history + [("System", f"Error: {str(e)}")]
def extract_subtopics(self, messages):
text = "\n".join([msg.content for msg in messages])
return re.findall(r'- \*\*(.*?)\*\*', text)
def beginner_topic(self, state: MultiAgentState):
prompt = f"What are the beginner-level topics you can learn about {', '.join(state.topic)} in {', '.join(state.context)}?"
msg = self.llm.invoke([SystemMessage("Suppose you're a middle grader..."), HumanMessage(prompt)])
return {"message": msg, "sub_topics": msg}
def middle_topic(self, state: MultiAgentState):
prompt = f"What are the middle-level topics for {', '.join(state.topic)} in {', '.join(state.context)}? Avoid previous."
msg = self.llm.invoke([SystemMessage("Suppose you're a college student..."), HumanMessage(prompt)])
return {"message": msg, "sub_topics": msg}
def advanced_topic(self, state: MultiAgentState):
prompt = f"What are the advanced-level topics for {', '.join(state.topic)} in {', '.join(state.context)}? Avoid previous."
msg = self.llm.invoke([SystemMessage("Suppose you're a teacher..."), HumanMessage(prompt)])
return {"message": msg, "sub_topics": msg}
def topic_extractor(self, state: MultiAgentState):
return {"sub_topic_list": self.extract_subtopics(state.sub_topics)}
def retrieve_node(self, state: StoryState):
if not self.document_store:
return {"retrieved_docs": [], "question": "No documents processed yet."}
retriever = self.document_store.as_retriever(search_kwargs={"k": 20})
topic = state.story_topic
query = f"information about {topic}"
docs = retriever.get_relevant_documents(query)
return {"retrieved_docs": docs, "question": query}
def rerank_node(self, state: StoryState):
topic = state.story_topic
query = f"Rerank documents based on how well they explain the topic {topic}"
docs = state.retrieved_docs
texts = [doc.page_content for doc in docs]
if not texts:
return {"reranked_docs": [], "question": query}
if self.embedding_choice == "Cohere" and hasattr(self, "cohere_client"):
rerank_results = self.cohere_client.rerank(
query=query,
documents=texts,
top_n=5,
model="rerank-v3.5"
)
top_docs = [texts[result.index] for result in rerank_results.results]
else:
top_docs = sorted(texts, key=lambda t: -len(t))[:5]
return {"reranked_docs": top_docs, "question": query}
def generate_story_node(self, state: StoryState, language="English"):
context = "\n\n".join(state.reranked_docs)
topic = state.story_topic
system_message = f"""
Suppose you're a brilliant science storyteller.
You write stories that help middle schoolers understand complex science topics with fun and clarity.
Add subtle humor and make it engaging.
Write the story in {language}.
"""
prompt = f"""
Use the following context to write a fun and simple story explaining **{topic}** to a middle schooler:\n
Context:\n{context}\n\n
Story:
"""
msg = self.llm.invoke([SystemMessage(system_message), HumanMessage(prompt)])
return {"stories": msg}
def run_multiagent_storygraph(self, topic: str, context: str, language: str = "English"):
if self.embedding_choice == "OpenAI":
self.llm = ChatOpenAI(model_name="gpt-4", temperature=0.7, api_key=self.api_key)
elif self.embedding_choice == "Cohere":
from langchain_cohere import ChatCohere
self.llm = ChatCohere(
model="command-r-plus-08-2024",
temperature=0.7,
cohere_api_key=os.getenv("COHERE_API_KEY")
)
# Define the story subgraph with reranking
story_graph = StateGraph(StoryState)
story_graph.add_node("Retrieve", self.retrieve_node)
story_graph.add_node("Rerank", self.rerank_node)
story_graph.add_node("Generate", lambda state: self.generate_story_node(state, language=state.get("language", "English")))
story_graph.set_entry_point("Retrieve")
story_graph.add_edge("Retrieve", "Rerank")
story_graph.add_edge("Rerank", "Generate")
story_graph.set_finish_point("Generate")
story_subgraph = story_graph.compile()
# Define the main graph
graph = StateGraph(MultiAgentState)
graph.add_node("beginner_topic", self.beginner_topic)
graph.add_node("middle_topic", self.middle_topic)
graph.add_node("advanced_topic", self.advanced_topic)
graph.add_node("topic_extractor", self.topic_extractor)
graph.add_node("story_generator", story_subgraph)
graph.add_edge(START, "beginner_topic")
graph.add_edge("beginner_topic", "middle_topic")
graph.add_edge("middle_topic", "advanced_topic")
graph.add_edge("advanced_topic", "topic_extractor")
graph.add_conditional_edges(
"topic_extractor",
lambda state: [Send("story_generator", {"story_topic": t, "language": language}) for t in state.sub_topic_list],
["story_generator"]
)
graph.add_edge("story_generator", END)
compiled = graph.compile(checkpointer=MemorySaver())
thread = {"configurable": {"thread_id": "storygraph-session"}}
# Initial invocation
result = compiled.invoke({"topic": [topic], "context": [context]}, thread)
# Fallback if no subtopics found
if not result.get("sub_topic_list"):
fallback_subs = ["Neural Networks", "Reinforcement Learning", "Supervised vs Unsupervised"]
compiled.update_state(thread, {"sub_topic_list": fallback_subs})
result = compiled.invoke(None, thread, stream_mode="values")
return result
# Sidebar
with st.sidebar:
st.title("About")
st.markdown(
"""
This app users to upload documents, generate summaries and stories, ask questions, and create podcasts in multiple languages.
"""
)
st.markdown("### Steps:")
st.markdown("1. Upload documents.")
st.markdown("2. Generate summary.")
st.markdown("3. Ask questions.")
st.markdown("2. Generate stories.")
st.markdown("4. Create podcast.")
# Streamlit UI
st.title("Knowledge Explorer")
st.image("./cover_image_1.png", use_container_width=True)
# Embedding model selector (main screen)
st.subheader("Embedding Model Selection")
embedding_choice = st.radio(
"Choose the embedding model for document processing and story generation:",
["OpenAI", "Cohere"],
horizontal=True,
key="embedding_model"
)
if "rag_system" not in st.session_state:
st.session_state.rag_system = DocumentRAG(embedding_choice=embedding_choice)
elif st.session_state.rag_system.embedding_choice != embedding_choice:
st.session_state.rag_system = DocumentRAG(embedding_choice=embedding_choice)
# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
if st.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents, please wait..."):
result = st.session_state.rag_system.process_documents(uploaded_files)
if "successfully" in result:
st.success(result)
else:
st.error(result)
else:
st.warning("No files uploaded.")
# Step 2: Generate Summary
def generate_summary(self, text, language):
"""Generate a structured summary from all chunks of the document."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
# Split into chunks to avoid token limit issues
chunks = [text[i:i + 3000] for i in range(0, len(text), 3000)]
summaries = []
for i, chunk in enumerate(chunks):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
You are a multilingual academic summarization assistant.
Your job is to summarize scientific or technical documents in a structured and concise way, **in {language}**.
Follow this structured format if applicable:
- Abstract
- Key Contributions
- Results/Findings
- Conclusion
- Limitations
- Future Work
If a section is not present in the document, skip it without guessing. Keep language formal, clear, and audience-appropriate.
"""},
{"role": "user", "content": chunk}
],
temperature=0.4
)
summaries.append(f"### Part {i+1}\n{response.choices[0].message.content.strip()}")
return "\n\n".join(summaries)
except Exception as e:
return f"Error generating summary: {str(e)}"
# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Urdu", "Spanish", "French", "Chinese", "Japanese"]
qa_language = st.radio(
"",
qa_language_options,
horizontal=True,
key="qa_language"
)
if st.session_state.rag_system.qa_chain:
history = []
user_question = st.text_input("Ask a question:")
if st.button("Submit Question"):
with st.spinner("Answering your question, please wait..."):
history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
for question, answer in history:
st.chat_message("user").write(question)
st.chat_message("assistant").write(answer)
else:
st.info("Please process documents first to enable Q&A.")
# Step 4: Multi-Agent Story Explorer
st.subheader("Step 5: Explore Subtopics via Stories")
st.write("Select Story Language:")
story_language_options = ["English", "Hindi", "Urdu", "Spanish", "French", "Chinese", "Japanese"]
story_language = st.radio(
"",
story_language_options,
horizontal=True,
key="story_language"
)
story_topic = st.text_input("Enter main topic:", value="Machine Learning")
story_context = st.text_input("Enter learning context:", value="Pollution")
if st.button("Run Story Graph"):
if st.session_state.rag_system.document_store is None:
st.warning("Please process documents first before running the story graph.")
else:
with st.spinner("Generating subtopics and stories..."):
result = st.session_state.rag_system.run_multiagent_storygraph(
topic=story_topic,
context=story_context,
language=story_language
)
subtopics = result.get("sub_topic_list", [])
st.markdown("### π§ Extracted Subtopics")
for sub in subtopics:
st.markdown(f"- {sub}")
stories = result.get("stories", [])
if stories:
st.markdown("### π Generated Stories")
tabs = st.tabs([f"Story {i+1}" for i in range(len(stories))])
for i, (tab, story) in enumerate(zip(tabs, stories)):
with tab:
st.markdown("#### βοΈ Story")
st.markdown(story.content)
else:
st.warning("No stories were generated.")
# Step 5: Generate Podcast
st.subheader("Step 4: Generate Podcast")
st.write("Select Podcast Language:")
podcast_language_options = ["English", "Hindi", "Urdu", "Spanish", "French", "Chinese", "Japanese"]
podcast_language = st.radio(
"",
podcast_language_options,
horizontal=True,
key="podcast_language"
)
if st.session_state.rag_system.document_summary:
if st.button("Generate Podcast"):
with st.spinner("Generating podcast, please wait..."):
script, audio_path = st.session_state.rag_system.create_podcast(podcast_language)
if audio_path:
st.text_area("Generated Podcast Script", script, height=200)
st.audio(audio_path, format="audio/mp3")
with open(audio_path, "rb") as audio_file:
st.download_button(
label="Download Podcast (.mp3)",
data=audio_file,
file_name="podcast.mp3",
mime="audio/mpeg"
)
st.success("Podcast generated successfully! You can listen to it above.")
else:
st.error(script)
else:
st.info("Please process documents and generate summary before creating a podcast.")
|