DrishtiSharma commited on
Commit
e49cf2a
·
verified ·
1 Parent(s): 6897cce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -100
app.py CHANGED
@@ -1,29 +1,15 @@
1
  import streamlit as st
2
  import os
3
- from openai import OpenAI
4
- import tempfile
5
- from langchain.chains import ConversationalRetrievalChain
6
- from langchain_openai import ChatOpenAI, OpenAIEmbeddings
7
- from langchain.text_splitter import RecursiveCharacterTextSplitter
8
- from langchain_community.vectorstores import Chroma
9
- from langchain_community.document_loaders import (
10
- PyPDFLoader,
11
- TextLoader,
12
- CSVLoader
13
- )
14
  from datetime import datetime
15
  from pydub import AudioSegment
 
16
  import pytz
17
-
18
  from langchain.chains import ConversationalRetrievalChain
19
  from langchain.text_splitter import RecursiveCharacterTextSplitter
20
  from langchain_openai import ChatOpenAI, OpenAIEmbeddings
21
  from langchain_community.vectorstores import Chroma
22
  from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
23
- import os
24
- import tempfile
25
- from datetime import datetime
26
- import pytz
27
 
28
 
29
  class DocumentRAG:
@@ -53,12 +39,10 @@ class DocumentRAG:
53
  try:
54
  documents = []
55
  for uploaded_file in uploaded_files:
56
- # Save uploaded file to a temporary location
57
  temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
58
  with open(temp_file_path, "wb") as temp_file:
59
  temp_file.write(uploaded_file.read())
60
 
61
- # Determine the loader based on the file type
62
  if temp_file_path.endswith('.pdf'):
63
  loader = PyPDFLoader(temp_file_path)
64
  elif temp_file_path.endswith('.txt'):
@@ -68,7 +52,6 @@ class DocumentRAG:
68
  else:
69
  return f"Unsupported file type: {uploaded_file.name}"
70
 
71
- # Load the documents
72
  try:
73
  documents.extend(loader.load())
74
  except Exception as e:
@@ -77,7 +60,6 @@ class DocumentRAG:
77
  if not documents:
78
  return "No valid documents were processed. Please check your files."
79
 
80
- # Split text for better processing
81
  text_splitter = RecursiveCharacterTextSplitter(
82
  chunk_size=1000,
83
  chunk_overlap=200,
@@ -85,16 +67,14 @@ class DocumentRAG:
85
  )
86
  documents = text_splitter.split_documents(documents)
87
 
88
- # Combine text for summary
89
  combined_text = " ".join([doc.page_content for doc in documents])
90
  self.document_summary = self.generate_summary(combined_text)
91
 
92
- # Create embeddings and initialize retrieval chain
93
  embeddings = OpenAIEmbeddings(api_key=self.api_key)
94
  self.document_store = Chroma.from_documents(
95
  documents,
96
  embeddings,
97
- persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
98
  )
99
 
100
  self.qa_chain = ConversationalRetrievalChain.from_llm(
@@ -137,8 +117,6 @@ class DocumentRAG:
137
 
138
  try:
139
  client = OpenAI(api_key=self.api_key)
140
-
141
- # Generate podcast script
142
  script_response = client.chat.completions.create(
143
  model="gpt-4",
144
  messages=[
@@ -157,7 +135,6 @@ class DocumentRAG:
157
  if not script:
158
  return "Error: Failed to generate podcast script.", None
159
 
160
- # Convert script to audio
161
  final_audio = AudioSegment.empty()
162
  is_first_speaker = True
163
 
@@ -201,98 +178,43 @@ class DocumentRAG:
201
  except Exception as e:
202
  return f"Error generating podcast: {str(e)}", None
203
 
204
- def generate_summary(self, text):
205
- """Generate a summary of the provided text."""
206
- if not self.api_key:
207
- return "API Key not set. Please set it in the environment variables."
208
- try:
209
- client = OpenAI(api_key=self.api_key)
210
- response = client.chat.completions.create(
211
- model="gpt-4",
212
- messages=[
213
- {"role": "system", "content": "Summarize the document content concisely and provide 3-5 key points for discussion."},
214
- {"role": "user", "content": text[:4000]}
215
- ],
216
- temperature=0.3
217
- )
218
- return response.choices[0].message.content
219
- except Exception as e:
220
- return f"Error generating summary: {str(e)}"
221
-
222
- def handle_query(self, question, history):
223
- """Handle user queries."""
224
- if not self.qa_chain:
225
- return history + [("System", "Please process the documents first.")]
226
- try:
227
- preface = """
228
- Instruction: Respond in English. Be professional and concise, keeping the response under 300 words.
229
- If you cannot provide an answer, say: "I am not sure about this question. Please try asking something else."
230
- """
231
- query = f"{preface}\nQuery: {question}"
232
-
233
- result = self.qa_chain({
234
- "question": query,
235
- "chat_history": [(q, a) for q, a in history]
236
- })
237
-
238
- if "answer" not in result:
239
- return history + [("System", "Sorry, an error occurred.")]
240
-
241
- history.append((question, result["answer"]))
242
- return history
243
- except Exception as e:
244
- return history + [("System", f"Error: {str(e)}")]
245
 
246
  # Initialize RAG system in session state
247
  if "rag_system" not in st.session_state:
248
  st.session_state.rag_system = DocumentRAG()
249
 
250
- # Streamlit UI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
  st.title("Document Analyzer and Podcast Generator")
252
 
253
- # Fetch the API key status
254
- if "OPENAI_API_KEY" not in os.environ or not os.getenv("OPENAI_API_KEY"):
255
- st.error("The 'OPENAI_API_KEY' environment variable is not set. Please configure it in your hosting environment.")
256
-
257
- # File upload
258
- st.subheader("Step 1: Upload Documents")
259
  uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
260
 
261
  if st.button("Process Documents"):
262
  if uploaded_files:
263
- # Process the uploaded files
264
  result = st.session_state.rag_system.process_documents(uploaded_files)
265
- if "successfully" in result:
266
- st.success(result)
267
- else:
268
- st.error(result)
269
  else:
270
  st.warning("No files uploaded.")
271
 
272
- # Document Q&A
273
- st.subheader("Step 2: Ask Questions")
274
- if st.session_state.rag_system.qa_chain:
275
- history = []
276
- user_question = st.text_input("Ask a question:")
277
- if st.button("Submit Question"):
278
- # Handle the user query
279
- history = st.session_state.rag_system.handle_query(user_question, history)
280
- for question, answer in history:
281
- st.chat_message("user").write(question)
282
- st.chat_message("assistant").write(answer)
283
- else:
284
- st.info("Please process documents before asking questions.")
285
-
286
- # Podcast Generation
287
- st.subheader("Step 3: Generate Podcast")
288
  if st.session_state.rag_system.document_summary:
 
289
  if st.button("Generate Podcast"):
290
  script, audio_path = st.session_state.rag_system.create_podcast()
291
  if audio_path:
292
  st.text_area("Generated Podcast Script", script, height=200)
293
  st.audio(audio_path, format="audio/mp3")
294
- st.success("Podcast generated successfully! You can listen to it above.")
295
- else:
296
- st.error(script)
297
- else:
298
- st.info("Please process documents to generate a podcast.")
 
1
  import streamlit as st
2
  import os
 
 
 
 
 
 
 
 
 
 
 
3
  from datetime import datetime
4
  from pydub import AudioSegment
5
+ import tempfile
6
  import pytz
7
+ from openai import OpenAI
8
  from langchain.chains import ConversationalRetrievalChain
9
  from langchain.text_splitter import RecursiveCharacterTextSplitter
10
  from langchain_openai import ChatOpenAI, OpenAIEmbeddings
11
  from langchain_community.vectorstores import Chroma
12
  from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
 
 
 
 
13
 
14
 
15
  class DocumentRAG:
 
39
  try:
40
  documents = []
41
  for uploaded_file in uploaded_files:
 
42
  temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
43
  with open(temp_file_path, "wb") as temp_file:
44
  temp_file.write(uploaded_file.read())
45
 
 
46
  if temp_file_path.endswith('.pdf'):
47
  loader = PyPDFLoader(temp_file_path)
48
  elif temp_file_path.endswith('.txt'):
 
52
  else:
53
  return f"Unsupported file type: {uploaded_file.name}"
54
 
 
55
  try:
56
  documents.extend(loader.load())
57
  except Exception as e:
 
60
  if not documents:
61
  return "No valid documents were processed. Please check your files."
62
 
 
63
  text_splitter = RecursiveCharacterTextSplitter(
64
  chunk_size=1000,
65
  chunk_overlap=200,
 
67
  )
68
  documents = text_splitter.split_documents(documents)
69
 
 
70
  combined_text = " ".join([doc.page_content for doc in documents])
71
  self.document_summary = self.generate_summary(combined_text)
72
 
 
73
  embeddings = OpenAIEmbeddings(api_key=self.api_key)
74
  self.document_store = Chroma.from_documents(
75
  documents,
76
  embeddings,
77
+ persist_directory=self.chroma_persist_dir
78
  )
79
 
80
  self.qa_chain = ConversationalRetrievalChain.from_llm(
 
117
 
118
  try:
119
  client = OpenAI(api_key=self.api_key)
 
 
120
  script_response = client.chat.completions.create(
121
  model="gpt-4",
122
  messages=[
 
135
  if not script:
136
  return "Error: Failed to generate podcast script.", None
137
 
 
138
  final_audio = AudioSegment.empty()
139
  is_first_speaker = True
140
 
 
178
  except Exception as e:
179
  return f"Error generating podcast: {str(e)}", None
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
  # Initialize RAG system in session state
183
  if "rag_system" not in st.session_state:
184
  st.session_state.rag_system = DocumentRAG()
185
 
186
+ # Sidebar
187
+ with st.sidebar:
188
+ st.title("About")
189
+ st.markdown(
190
+ """
191
+ This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
192
+ It allows users to upload documents, generate summaries, ask questions, and create podcasts.
193
+ """
194
+ )
195
+ st.markdown("### Steps:")
196
+ st.markdown("1. Upload documents.")
197
+ st.markdown("2. Generate summaries.")
198
+ st.markdown("3. Ask questions.")
199
+ st.markdown("4. Create podcasts.")
200
+
201
+ # Main App
202
  st.title("Document Analyzer and Podcast Generator")
203
 
 
 
 
 
 
 
204
  uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
205
 
206
  if st.button("Process Documents"):
207
  if uploaded_files:
 
208
  result = st.session_state.rag_system.process_documents(uploaded_files)
209
+ st.success(result) if "successfully" in result else st.error(result)
 
 
 
210
  else:
211
  st.warning("No files uploaded.")
212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
  if st.session_state.rag_system.document_summary:
214
+ st.subheader("Step 2: Generate Podcast")
215
  if st.button("Generate Podcast"):
216
  script, audio_path = st.session_state.rag_system.create_podcast()
217
  if audio_path:
218
  st.text_area("Generated Podcast Script", script, height=200)
219
  st.audio(audio_path, format="audio/mp3")
220
+ st.success("Podcast generated successfully!")