DegMaTsu's picture
Initial commit ComfyUI-Reactor-Fast-Face-Swap
b68ef84
# Adapted from https://github.com/lodestone-rock/flow
from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
An embedder module that combines input features with a 2D positional
encoding that mimics the Discrete Cosine Transform (DCT).
This module takes an input tensor of shape (B, P^2, C), where P is the
patch size, and enriches it with positional information before projecting
it to a new hidden size.
"""
def __init__(
self,
in_channels: int,
hidden_size_input: int,
max_freqs: int,
dtype=None,
device=None,
operations=None,
):
"""
Initializes the NerfEmbedder.
Args:
in_channels (int): The number of channels in the input tensor.
hidden_size_input (int): The desired dimension of the output embedding.
max_freqs (int): The number of frequency components to use for both
the x and y dimensions of the positional encoding.
The total number of positional features will be max_freqs^2.
"""
super().__init__()
self.dtype = dtype
self.max_freqs = max_freqs
self.hidden_size_input = hidden_size_input
# A linear layer to project the concatenated input features and
# positional encodings to the final output dimension.
self.embedder = nn.Sequential(
operations.Linear(in_channels + max_freqs**2, hidden_size_input, dtype=dtype, device=device)
)
@lru_cache(maxsize=4)
def fetch_pos(self, patch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""
Generates and caches 2D DCT-like positional embeddings for a given patch size.
The LRU cache is a performance optimization that avoids recomputing the
same positional grid on every forward pass.
Args:
patch_size (int): The side length of the square input patch.
device: The torch device to create the tensors on.
dtype: The torch dtype for the tensors.
Returns:
A tensor of shape (1, patch_size^2, max_freqs^2) containing the
positional embeddings.
"""
# Create normalized 1D coordinate grids from 0 to 1.
pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
# Create a 2D meshgrid of coordinates.
pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij")
# Reshape positions to be broadcastable with frequencies.
# Shape becomes (patch_size^2, 1, 1).
pos_x = pos_x.reshape(-1, 1, 1)
pos_y = pos_y.reshape(-1, 1, 1)
# Create a 1D tensor of frequency values from 0 to max_freqs-1.
freqs = torch.linspace(0, self.max_freqs - 1, self.max_freqs, dtype=dtype, device=device)
# Reshape frequencies to be broadcastable for creating 2D basis functions.
# freqs_x shape: (1, max_freqs, 1)
# freqs_y shape: (1, 1, max_freqs)
freqs_x = freqs[None, :, None]
freqs_y = freqs[None, None, :]
# A custom weighting coefficient, not part of standard DCT.
# This seems to down-weight the contribution of higher-frequency interactions.
coeffs = (1 + freqs_x * freqs_y) ** -1
# Calculate the 1D cosine basis functions for x and y coordinates.
# This is the core of the DCT formulation.
dct_x = torch.cos(pos_x * freqs_x * torch.pi)
dct_y = torch.cos(pos_y * freqs_y * torch.pi)
# Combine the 1D basis functions to create 2D basis functions by element-wise
# multiplication, and apply the custom coefficients. Broadcasting handles the
# combination of all (pos_x, freqs_x) with all (pos_y, freqs_y).
# The result is flattened into a feature vector for each position.
dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs ** 2)
return dct
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the embedder.
Args:
inputs (Tensor): The input tensor of shape (B, P^2, C).
Returns:
Tensor: The output tensor of shape (B, P^2, hidden_size_input).
"""
# Get the batch size, number of pixels, and number of channels.
B, P2, C = inputs.shape
# Infer the patch side length from the number of pixels (P^2).
patch_size = int(P2 ** 0.5)
input_dtype = inputs.dtype
inputs = inputs.to(dtype=self.dtype)
# Fetch the pre-computed or cached positional embeddings.
dct = self.fetch_pos(patch_size, inputs.device, self.dtype)
# Repeat the positional embeddings for each item in the batch.
dct = dct.repeat(B, 1, 1)
# Concatenate the original input features with the positional embeddings
# along the feature dimension.
inputs = torch.cat((inputs, dct), dim=-1)
# Project the combined tensor to the target hidden size.
return self.embedder(inputs).to(dtype=input_dtype)
class NerfGLUBlock(nn.Module):
"""
A NerfBlock using a Gated Linear Unit (GLU) like MLP.
"""
def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
# The total number of parameters for the MLP is increased to accommodate
# the gate, value, and output projection matrices.
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.mlp_ratio = mlp_ratio
def forward(self, x: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
batch_size, num_x, hidden_size_x = x.shape
mlp_params = self.param_generator(s)
# Split the generated parameters into three parts for the gate, value, and output projection.
fc1_gate_params, fc1_value_params, fc2_params = mlp_params.chunk(3, dim=-1)
# Reshape the parameters into matrices for batch matrix multiplication.
fc1_gate = fc1_gate_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc1_value = fc1_value_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc2 = fc2_params.view(batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x)
# Normalize the generated weight matrices as in the original implementation.
fc1_gate = torch.nn.functional.normalize(fc1_gate, dim=-2)
fc1_value = torch.nn.functional.normalize(fc1_value, dim=-2)
fc2 = torch.nn.functional.normalize(fc2, dim=-2)
res_x = x
x = self.norm(x)
# Apply the final output projection.
x = torch.bmm(torch.nn.functional.silu(torch.bmm(x, fc1_gate)) * torch.bmm(x, fc1_value), fc2)
return x + res_x
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.linear(self.norm(x.movedim(1, -1))).movedim(-1, 1)
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,
kernel_size=3,
padding=1,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.conv(self.norm(x.movedim(1, -1)).movedim(-1, 1))