# Adapted from https://github.com/lodestone-rock/flow from functools import lru_cache import torch from torch import nn from comfy.ldm.flux.layers import RMSNorm class NerfEmbedder(nn.Module): """ An embedder module that combines input features with a 2D positional encoding that mimics the Discrete Cosine Transform (DCT). This module takes an input tensor of shape (B, P^2, C), where P is the patch size, and enriches it with positional information before projecting it to a new hidden size. """ def __init__( self, in_channels: int, hidden_size_input: int, max_freqs: int, dtype=None, device=None, operations=None, ): """ Initializes the NerfEmbedder. Args: in_channels (int): The number of channels in the input tensor. hidden_size_input (int): The desired dimension of the output embedding. max_freqs (int): The number of frequency components to use for both the x and y dimensions of the positional encoding. The total number of positional features will be max_freqs^2. """ super().__init__() self.dtype = dtype self.max_freqs = max_freqs self.hidden_size_input = hidden_size_input # A linear layer to project the concatenated input features and # positional encodings to the final output dimension. self.embedder = nn.Sequential( operations.Linear(in_channels + max_freqs**2, hidden_size_input, dtype=dtype, device=device) ) @lru_cache(maxsize=4) def fetch_pos(self, patch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor: """ Generates and caches 2D DCT-like positional embeddings for a given patch size. The LRU cache is a performance optimization that avoids recomputing the same positional grid on every forward pass. Args: patch_size (int): The side length of the square input patch. device: The torch device to create the tensors on. dtype: The torch dtype for the tensors. Returns: A tensor of shape (1, patch_size^2, max_freqs^2) containing the positional embeddings. """ # Create normalized 1D coordinate grids from 0 to 1. pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype) pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype) # Create a 2D meshgrid of coordinates. pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij") # Reshape positions to be broadcastable with frequencies. # Shape becomes (patch_size^2, 1, 1). pos_x = pos_x.reshape(-1, 1, 1) pos_y = pos_y.reshape(-1, 1, 1) # Create a 1D tensor of frequency values from 0 to max_freqs-1. freqs = torch.linspace(0, self.max_freqs - 1, self.max_freqs, dtype=dtype, device=device) # Reshape frequencies to be broadcastable for creating 2D basis functions. # freqs_x shape: (1, max_freqs, 1) # freqs_y shape: (1, 1, max_freqs) freqs_x = freqs[None, :, None] freqs_y = freqs[None, None, :] # A custom weighting coefficient, not part of standard DCT. # This seems to down-weight the contribution of higher-frequency interactions. coeffs = (1 + freqs_x * freqs_y) ** -1 # Calculate the 1D cosine basis functions for x and y coordinates. # This is the core of the DCT formulation. dct_x = torch.cos(pos_x * freqs_x * torch.pi) dct_y = torch.cos(pos_y * freqs_y * torch.pi) # Combine the 1D basis functions to create 2D basis functions by element-wise # multiplication, and apply the custom coefficients. Broadcasting handles the # combination of all (pos_x, freqs_x) with all (pos_y, freqs_y). # The result is flattened into a feature vector for each position. dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs ** 2) return dct def forward(self, inputs: torch.Tensor) -> torch.Tensor: """ Forward pass for the embedder. Args: inputs (Tensor): The input tensor of shape (B, P^2, C). Returns: Tensor: The output tensor of shape (B, P^2, hidden_size_input). """ # Get the batch size, number of pixels, and number of channels. B, P2, C = inputs.shape # Infer the patch side length from the number of pixels (P^2). patch_size = int(P2 ** 0.5) input_dtype = inputs.dtype inputs = inputs.to(dtype=self.dtype) # Fetch the pre-computed or cached positional embeddings. dct = self.fetch_pos(patch_size, inputs.device, self.dtype) # Repeat the positional embeddings for each item in the batch. dct = dct.repeat(B, 1, 1) # Concatenate the original input features with the positional embeddings # along the feature dimension. inputs = torch.cat((inputs, dct), dim=-1) # Project the combined tensor to the target hidden size. return self.embedder(inputs).to(dtype=input_dtype) class NerfGLUBlock(nn.Module): """ A NerfBlock using a Gated Linear Unit (GLU) like MLP. """ def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio, dtype=None, device=None, operations=None): super().__init__() # The total number of parameters for the MLP is increased to accommodate # the gate, value, and output projection matrices. # We now need to generate parameters for 3 matrices. total_params = 3 * hidden_size_x**2 * mlp_ratio self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device) self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations) self.mlp_ratio = mlp_ratio def forward(self, x: torch.Tensor, s: torch.Tensor) -> torch.Tensor: batch_size, num_x, hidden_size_x = x.shape mlp_params = self.param_generator(s) # Split the generated parameters into three parts for the gate, value, and output projection. fc1_gate_params, fc1_value_params, fc2_params = mlp_params.chunk(3, dim=-1) # Reshape the parameters into matrices for batch matrix multiplication. fc1_gate = fc1_gate_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio) fc1_value = fc1_value_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio) fc2 = fc2_params.view(batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x) # Normalize the generated weight matrices as in the original implementation. fc1_gate = torch.nn.functional.normalize(fc1_gate, dim=-2) fc1_value = torch.nn.functional.normalize(fc1_value, dim=-2) fc2 = torch.nn.functional.normalize(fc2, dim=-2) res_x = x x = self.norm(x) # Apply the final output projection. x = torch.bmm(torch.nn.functional.silu(torch.bmm(x, fc1_gate)) * torch.bmm(x, fc1_value), fc2) return x + res_x class NerfFinalLayer(nn.Module): def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None): super().__init__() self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations) self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device) def forward(self, x: torch.Tensor) -> torch.Tensor: # RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1. # So we temporarily move the channel dimension to the end for the norm operation. return self.linear(self.norm(x.movedim(1, -1))).movedim(-1, 1) class NerfFinalLayerConv(nn.Module): def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None): super().__init__() self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations) self.conv = operations.Conv2d( in_channels=hidden_size, out_channels=out_channels, kernel_size=3, padding=1, dtype=dtype, device=device, ) def forward(self, x: torch.Tensor) -> torch.Tensor: # RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1. # So we temporarily move the channel dimension to the end for the norm operation. return self.conv(self.norm(x.movedim(1, -1)).movedim(-1, 1))