Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| # Load the trained model | |
| model = tf.keras.models.load_model('/content/tato.h5') | |
| # Define class labels (update with your dataset's class names) | |
| class_labels = ['Late Blight', 'Early Blight', 'Healthy'] | |
| # Define a prediction function | |
| def predict(image): | |
| # Resize and preprocess the image | |
| image = image.resize((224, 224)) # Resize to match model input size | |
| image_array = np.array(image) / 255.0 # Normalize the image | |
| image_array = np.expand_dims(image_array, axis=0) # Add batch dimension | |
| # Make predictions | |
| predictions = model.predict(image_array) | |
| predicted_class = class_labels[np.argmax(predictions)] # Map prediction to class label | |
| confidence = np.max(predictions) # Get the highest confidence score | |
| return f"Predicted Class: {predicted_class}" #with confidence {confidence:.2f}" | |
| # Create a Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, # The prediction function | |
| inputs=gr.Image(type="pil"), # Input type (image as PIL object) | |
| outputs="text", # Output type (text) | |
| title="Plant Disease Classifier", | |
| description="Upload an image of a plant leaf to identify its condition." | |
| ) | |
| # Launch the interface | |
| interface.launch() | |