Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Load the trained model
|
| 7 |
+
model = tf.keras.models.load_model('/content/tato.h5')
|
| 8 |
+
|
| 9 |
+
# Define class labels (update with your dataset's class names)
|
| 10 |
+
class_labels = ['Late Blight', 'Early Blight', 'Healthy']
|
| 11 |
+
|
| 12 |
+
# Define a prediction function
|
| 13 |
+
def predict(image):
|
| 14 |
+
# Resize and preprocess the image
|
| 15 |
+
image = image.resize((224, 224)) # Resize to match model input size
|
| 16 |
+
image_array = np.array(image) / 255.0 # Normalize the image
|
| 17 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
| 18 |
+
|
| 19 |
+
# Make predictions
|
| 20 |
+
predictions = model.predict(image_array)
|
| 21 |
+
predicted_class = class_labels[np.argmax(predictions)] # Map prediction to class label
|
| 22 |
+
confidence = np.max(predictions) # Get the highest confidence score
|
| 23 |
+
|
| 24 |
+
return f"Predicted Class: {predicted_class}" #with confidence {confidence:.2f}"
|
| 25 |
+
|
| 26 |
+
# Create a Gradio interface
|
| 27 |
+
interface = gr.Interface(
|
| 28 |
+
fn=predict, # The prediction function
|
| 29 |
+
inputs=gr.Image(type="pil"), # Input type (image as PIL object)
|
| 30 |
+
outputs="text", # Output type (text)
|
| 31 |
+
title="Plant Disease Classifier",
|
| 32 |
+
description="Upload an image of a plant leaf to identify its condition."
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Launch the interface
|
| 36 |
+
interface.launch()
|