DSatishchandra's picture
Update app.py
7b8e5d9 verified
import gradio as gr # Import Gradio for building the interactive UI
import cv2 # Import OpenCV for video processing and annotation
import os # Import os for file handling
import numpy as np # Import NumPy for array operations
from datetime import datetime # Import datetime for timestamp generation
import matplotlib.pyplot as plt # Import Matplotlib for plotting trends
# Import custom modules for fault detection, model loading, and settings
from services.detection_service import detect_faults_solar, detect_faults_windmill
from services.anomaly_service import track_faults, predict_fault
from models.solar_model import load_solar_model
from models.windmill_model import load_windmill_model
from config.settings import VIDEO_FOLDER
# Initialize global state to track faults across frames
logs = [] # List to store log entries
fault_counts = [] # List to store fault counts per frame
frame_numbers = [] # List to store frame numbers
total_detected = 0 # Counter for total faults detected
# Custom CSS to style the dashboard, mimicking the screenshot's blue borders and layout
css = """
<style>
.main-header {
text-align: center;
font-size: 24px;
font-weight: bold;
color: #333;
margin-bottom: 10px;
}
.status {
text-align: center;
font-size: 16px;
color: #333;
margin-bottom: 20px;
}
.section-title {
font-size: 16px;
font-weight: bold;
color: #333;
text-transform: uppercase;
margin-bottom: 10px;
}
.section-box {
border: 1px solid #4A90E2;
padding: 10px;
border-radius: 5px;
margin-bottom: 20px;
}
.log-entry {
font-size: 14px;
color: #333;
margin-bottom: 5px;
}
.metrics-text {
font-size: 14px;
color: #333;
margin-bottom: 5px;
}
</style>
"""
# Function to process video frames and detect faults
def process_video(video_path, detection_type):
global logs, fault_counts, frame_numbers, total_detected
cap = cv2.VideoCapture(video_path) # Open the video file
if not cap.isOpened():
return "Error: Could not open video file.", None, None, None, None, None
model = load_solar_model() if detection_type == "Solar Panel" else load_windmill_model() # Load appropriate model
frame_count = 0
# Clear previous state for a new video session
logs.clear()
fault_counts.clear()
frame_numbers.clear()
total_detected = 0
while cap.isOpened():
ret, frame = cap.read() # Read each frame
if not ret:
break
frame_count += 1
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert to RGB for display
# Detect faults using the appropriate model
faults = detect_faults_solar(model, frame_rgb) if detection_type == "Solar Panel" else detect_faults_windmill(model, frame_rgb)
num_faults = len(faults)
# Draw bounding boxes and labels for detected faults
for fault in faults:
x, y = int(fault['location'][0]), int(fault['location'][1])
cv2.rectangle(frame_rgb, (x-30, y-30), (x+30, y+30), (255, 0, 0), 2) # Draw blue box
cv2.putText(frame_rgb, f"{fault['type']}", (x, y-40),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # Add fault type label
# Update state with current frame data
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp} - Frame {frame_count} - Faults: {num_faults}"
logs.append(log_entry)
total_detected += num_faults
fault_counts.append(num_faults)
frame_numbers.append(frame_count)
# Limit data to last 100 frames for performance
if len(frame_numbers) > 100:
frame_numbers.pop(0)
fault_counts.pop(0)
# Prepare outputs for Gradio UI
video_output = frame_rgb
metrics = f"faults: {num_faults}<br>total_detected: {total_detected}"
live_logs = "<br>".join(logs[-20:]) # Display last 20 logs
last_5_events = "<br>".join(logs[-5:]) if logs else "No events yet"
prediction = "Potential fault escalation detected!" if predict_fault(fault_counts) else ""
# Generate fault trends graph
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(frame_numbers, fault_counts, marker='o', color='blue')
ax.set_title("Faults Over Time", fontsize=10)
ax.set_xlabel("Frame", fontsize=8)
ax.set_ylabel("Count", fontsize=8)
ax.grid(True)
ax.tick_params(axis='both', which='major', labelsize=6)
plt.tight_layout()
return video_output, metrics, live_logs, last_5_events, fig, prediction
# Create Gradio Blocks interface with custom CSS
with gr.Blocks(css=css) as demo:
gr.Markdown("### THERMAL FAULT DETECTION DASHBOARD") # Main header
gr.Markdown("#### 🟒 RUNNING") # Status indicator
with gr.Row():
with gr.Column(scale=3):
with gr.Column():
gr.Markdown("**LIVE VIDEO FEED**") # Section title
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
video_output = gr.Image(label="", interactive=False) # Display video feed
gr.Markdown('</div>', unsafe_allow_html=True)
with gr.Column(scale=1):
with gr.Column():
gr.Markdown("**LIVE METRICS**") # Section title
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
metrics_output = gr.Markdown(label="") # Display metrics
prediction_output = gr.Markdown(label="") # Display prediction warning
gr.Markdown('</div>', unsafe_allow_html=True)
with gr.Row():
with gr.Column(scale=1):
with gr.Column():
gr.Markdown("**LIVE LOGS**") # Section title
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
logs_output = gr.Markdown(label="") # Display live logs
gr.Markdown('</div>', unsafe_allow_html=True)
with gr.Column():
gr.Markdown("**LAST 5 CAPTURED EVENTS**") # Section title
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
events_output = gr.Markdown(label="") # Display last 5 events
gr.Markdown('</div>', unsafe_allow_html=True)
with gr.Column(scale=2):
with gr.Column():
gr.Markdown("**DETECTION TRENDS**") # Section title
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
gr.Markdown("**Faults Over Time**") # Sub-title
trends_output = gr.Plot(label="") # Display fault trends graph
gr.Markdown('</div>', unsafe_allow_html=True)
# Sidebar for user inputs
with gr.Row():
with gr.Column():
video_files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith('.mp4')] # Get video files
video_input = gr.Dropdown(choices=video_files, label="Select Video") # Video selection
detection_type = gr.Dropdown(choices=["Solar Panel", "Windmill"], label="Detection Type") # Detection type
submit_btn = gr.Button("Start Processing") # Trigger button
# Connect inputs to outputs with event trigger
submit_btn.click(
fn=process_video,
inputs=[video_input, detection_type],
outputs=[video_output, metrics_output, logs_output, events_output, trends_output, prediction_output],
_js="() => [document.querySelector('input[type=\"file\"]').value, document.querySelector('select[name=\"detection_type\"]').value]"
)
# Launch the Gradio app
demo.launch()