Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,24 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import os
|
4 |
-
import numpy as np
|
5 |
-
from datetime import datetime
|
6 |
-
import matplotlib.pyplot as plt
|
|
|
|
|
7 |
from services.detection_service import detect_faults_solar, detect_faults_windmill
|
8 |
from services.anomaly_service import track_faults, predict_fault
|
9 |
from models.solar_model import load_solar_model
|
10 |
from models.windmill_model import load_windmill_model
|
11 |
from config.settings import VIDEO_FOLDER
|
12 |
|
13 |
-
# Initialize global state
|
14 |
-
logs = []
|
15 |
-
fault_counts = []
|
16 |
-
frame_numbers = []
|
17 |
-
total_detected = 0
|
18 |
|
19 |
-
# Custom CSS to
|
20 |
css = """
|
21 |
<style>
|
22 |
.main-header {
|
@@ -58,41 +60,42 @@ css = """
|
|
58 |
</style>
|
59 |
"""
|
60 |
|
|
|
61 |
def process_video(video_path, detection_type):
|
62 |
global logs, fault_counts, frame_numbers, total_detected
|
63 |
-
cap = cv2.VideoCapture(video_path)
|
64 |
if not cap.isOpened():
|
65 |
return "Error: Could not open video file.", None, None, None, None, None
|
66 |
|
67 |
-
model = load_solar_model() if detection_type == "Solar Panel" else load_windmill_model()
|
68 |
frame_count = 0
|
69 |
|
70 |
-
# Clear previous state for a new video
|
71 |
logs.clear()
|
72 |
fault_counts.clear()
|
73 |
frame_numbers.clear()
|
74 |
total_detected = 0
|
75 |
|
76 |
while cap.isOpened():
|
77 |
-
ret, frame = cap.read()
|
78 |
if not ret:
|
79 |
break
|
80 |
|
81 |
frame_count += 1
|
82 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
83 |
|
84 |
-
# Detect faults
|
85 |
faults = detect_faults_solar(model, frame_rgb) if detection_type == "Solar Panel" else detect_faults_windmill(model, frame_rgb)
|
86 |
num_faults = len(faults)
|
87 |
|
88 |
-
# Draw bounding boxes and labels
|
89 |
for fault in faults:
|
90 |
x, y = int(fault['location'][0]), int(fault['location'][1])
|
91 |
-
cv2.rectangle(frame_rgb, (x-30, y-30), (x+30, y+30), (255, 0, 0), 2)
|
92 |
cv2.putText(frame_rgb, f"{fault['type']}", (x, y-40),
|
93 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
94 |
|
95 |
-
# Update state
|
96 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
97 |
log_entry = f"{timestamp} - Frame {frame_count} - Faults: {num_faults}"
|
98 |
logs.append(log_entry)
|
@@ -100,19 +103,19 @@ def process_video(video_path, detection_type):
|
|
100 |
fault_counts.append(num_faults)
|
101 |
frame_numbers.append(frame_count)
|
102 |
|
103 |
-
# Limit to last 100 frames
|
104 |
if len(frame_numbers) > 100:
|
105 |
frame_numbers.pop(0)
|
106 |
fault_counts.pop(0)
|
107 |
|
108 |
-
# Prepare outputs
|
109 |
video_output = frame_rgb
|
110 |
metrics = f"faults: {num_faults}<br>total_detected: {total_detected}"
|
111 |
-
live_logs = "<br>".join(logs[-20:]) #
|
112 |
last_5_events = "<br>".join(logs[-5:]) if logs else "No events yet"
|
113 |
prediction = "Potential fault escalation detected!" if predict_fault(fault_counts) else ""
|
114 |
|
115 |
-
# Generate trends graph
|
116 |
fig, ax = plt.subplots(figsize=(6, 3))
|
117 |
ax.plot(frame_numbers, fault_counts, marker='o', color='blue')
|
118 |
ax.set_title("Faults Over Time", fontsize=10)
|
@@ -124,55 +127,55 @@ def process_video(video_path, detection_type):
|
|
124 |
|
125 |
return video_output, metrics, live_logs, last_5_events, fig, prediction
|
126 |
|
127 |
-
# Gradio interface
|
128 |
with gr.Blocks(css=css) as demo:
|
129 |
-
gr.Markdown(
|
130 |
-
gr.Markdown(
|
131 |
|
132 |
with gr.Row():
|
133 |
with gr.Column(scale=3):
|
134 |
with gr.Column():
|
135 |
-
gr.Markdown(
|
136 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
137 |
-
video_output = gr.Image(label="", interactive=False)
|
138 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
139 |
with gr.Column(scale=1):
|
140 |
with gr.Column():
|
141 |
-
gr.Markdown(
|
142 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
143 |
-
metrics_output = gr.Markdown(label=""
|
144 |
-
prediction_output = gr.Markdown(label="")
|
145 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
146 |
|
147 |
with gr.Row():
|
148 |
with gr.Column(scale=1):
|
149 |
with gr.Column():
|
150 |
-
gr.Markdown(
|
151 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
152 |
-
logs_output = gr.Markdown(label=""
|
153 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
154 |
with gr.Column():
|
155 |
-
gr.Markdown(
|
156 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
157 |
-
events_output = gr.Markdown(label=""
|
158 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
159 |
with gr.Column(scale=2):
|
160 |
with gr.Column():
|
161 |
-
gr.Markdown(
|
162 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
163 |
-
gr.Markdown(
|
164 |
-
trends_output = gr.Plot(label="")
|
165 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
166 |
|
167 |
-
# Sidebar for
|
168 |
with gr.Row():
|
169 |
with gr.Column():
|
170 |
-
video_files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith('.mp4')]
|
171 |
-
video_input = gr.Dropdown(choices=video_files, label="Select Video")
|
172 |
-
detection_type = gr.Dropdown(choices=["Solar Panel", "Windmill"], label="Detection Type")
|
173 |
-
submit_btn = gr.Button("Start Processing")
|
174 |
|
175 |
-
# Connect inputs to outputs
|
176 |
submit_btn.click(
|
177 |
fn=process_video,
|
178 |
inputs=[video_input, detection_type],
|
@@ -180,4 +183,5 @@ with gr.Blocks(css=css) as demo:
|
|
180 |
_js="() => [document.querySelector('input[type=\"file\"]').value, document.querySelector('select[name=\"detection_type\"]').value]"
|
181 |
)
|
182 |
|
|
|
183 |
demo.launch()
|
|
|
1 |
+
import gradio as gr # Import Gradio for building the interactive UI
|
2 |
+
import cv2 # Import OpenCV for video processing and annotation
|
3 |
+
import os # Import os for file handling
|
4 |
+
import numpy as np # Import NumPy for array operations
|
5 |
+
from datetime import datetime # Import datetime for timestamp generation
|
6 |
+
import matplotlib.pyplot as plt # Import Matplotlib for plotting trends
|
7 |
+
|
8 |
+
# Import custom modules for fault detection, model loading, and settings
|
9 |
from services.detection_service import detect_faults_solar, detect_faults_windmill
|
10 |
from services.anomaly_service import track_faults, predict_fault
|
11 |
from models.solar_model import load_solar_model
|
12 |
from models.windmill_model import load_windmill_model
|
13 |
from config.settings import VIDEO_FOLDER
|
14 |
|
15 |
+
# Initialize global state to track faults across frames
|
16 |
+
logs = [] # List to store log entries
|
17 |
+
fault_counts = [] # List to store fault counts per frame
|
18 |
+
frame_numbers = [] # List to store frame numbers
|
19 |
+
total_detected = 0 # Counter for total faults detected
|
20 |
|
21 |
+
# Custom CSS to style the dashboard, mimicking the screenshot's blue borders and layout
|
22 |
css = """
|
23 |
<style>
|
24 |
.main-header {
|
|
|
60 |
</style>
|
61 |
"""
|
62 |
|
63 |
+
# Function to process video frames and detect faults
|
64 |
def process_video(video_path, detection_type):
|
65 |
global logs, fault_counts, frame_numbers, total_detected
|
66 |
+
cap = cv2.VideoCapture(video_path) # Open the video file
|
67 |
if not cap.isOpened():
|
68 |
return "Error: Could not open video file.", None, None, None, None, None
|
69 |
|
70 |
+
model = load_solar_model() if detection_type == "Solar Panel" else load_windmill_model() # Load appropriate model
|
71 |
frame_count = 0
|
72 |
|
73 |
+
# Clear previous state for a new video session
|
74 |
logs.clear()
|
75 |
fault_counts.clear()
|
76 |
frame_numbers.clear()
|
77 |
total_detected = 0
|
78 |
|
79 |
while cap.isOpened():
|
80 |
+
ret, frame = cap.read() # Read each frame
|
81 |
if not ret:
|
82 |
break
|
83 |
|
84 |
frame_count += 1
|
85 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert to RGB for display
|
86 |
|
87 |
+
# Detect faults using the appropriate model
|
88 |
faults = detect_faults_solar(model, frame_rgb) if detection_type == "Solar Panel" else detect_faults_windmill(model, frame_rgb)
|
89 |
num_faults = len(faults)
|
90 |
|
91 |
+
# Draw bounding boxes and labels for detected faults
|
92 |
for fault in faults:
|
93 |
x, y = int(fault['location'][0]), int(fault['location'][1])
|
94 |
+
cv2.rectangle(frame_rgb, (x-30, y-30), (x+30, y+30), (255, 0, 0), 2) # Draw blue box
|
95 |
cv2.putText(frame_rgb, f"{fault['type']}", (x, y-40),
|
96 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # Add fault type label
|
97 |
|
98 |
+
# Update state with current frame data
|
99 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
100 |
log_entry = f"{timestamp} - Frame {frame_count} - Faults: {num_faults}"
|
101 |
logs.append(log_entry)
|
|
|
103 |
fault_counts.append(num_faults)
|
104 |
frame_numbers.append(frame_count)
|
105 |
|
106 |
+
# Limit data to last 100 frames for performance
|
107 |
if len(frame_numbers) > 100:
|
108 |
frame_numbers.pop(0)
|
109 |
fault_counts.pop(0)
|
110 |
|
111 |
+
# Prepare outputs for Gradio UI
|
112 |
video_output = frame_rgb
|
113 |
metrics = f"faults: {num_faults}<br>total_detected: {total_detected}"
|
114 |
+
live_logs = "<br>".join(logs[-20:]) # Display last 20 logs
|
115 |
last_5_events = "<br>".join(logs[-5:]) if logs else "No events yet"
|
116 |
prediction = "Potential fault escalation detected!" if predict_fault(fault_counts) else ""
|
117 |
|
118 |
+
# Generate fault trends graph
|
119 |
fig, ax = plt.subplots(figsize=(6, 3))
|
120 |
ax.plot(frame_numbers, fault_counts, marker='o', color='blue')
|
121 |
ax.set_title("Faults Over Time", fontsize=10)
|
|
|
127 |
|
128 |
return video_output, metrics, live_logs, last_5_events, fig, prediction
|
129 |
|
130 |
+
# Create Gradio Blocks interface with custom CSS
|
131 |
with gr.Blocks(css=css) as demo:
|
132 |
+
gr.Markdown("### THERMAL FAULT DETECTION DASHBOARD") # Main header
|
133 |
+
gr.Markdown("#### 🟢 RUNNING") # Status indicator
|
134 |
|
135 |
with gr.Row():
|
136 |
with gr.Column(scale=3):
|
137 |
with gr.Column():
|
138 |
+
gr.Markdown("**LIVE VIDEO FEED**") # Section title
|
139 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
140 |
+
video_output = gr.Image(label="", interactive=False) # Display video feed
|
141 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
142 |
with gr.Column(scale=1):
|
143 |
with gr.Column():
|
144 |
+
gr.Markdown("**LIVE METRICS**") # Section title
|
145 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
146 |
+
metrics_output = gr.Markdown(label="") # Display metrics
|
147 |
+
prediction_output = gr.Markdown(label="") # Display prediction warning
|
148 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
149 |
|
150 |
with gr.Row():
|
151 |
with gr.Column(scale=1):
|
152 |
with gr.Column():
|
153 |
+
gr.Markdown("**LIVE LOGS**") # Section title
|
154 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
155 |
+
logs_output = gr.Markdown(label="") # Display live logs
|
156 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
157 |
with gr.Column():
|
158 |
+
gr.Markdown("**LAST 5 CAPTURED EVENTS**") # Section title
|
159 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
160 |
+
events_output = gr.Markdown(label="") # Display last 5 events
|
161 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
162 |
with gr.Column(scale=2):
|
163 |
with gr.Column():
|
164 |
+
gr.Markdown("**DETECTION TRENDS**") # Section title
|
165 |
gr.Markdown('<div class="section-box">', unsafe_allow_html=True)
|
166 |
+
gr.Markdown("**Faults Over Time**") # Sub-title
|
167 |
+
trends_output = gr.Plot(label="") # Display fault trends graph
|
168 |
gr.Markdown('</div>', unsafe_allow_html=True)
|
169 |
|
170 |
+
# Sidebar for user inputs
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
173 |
+
video_files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith('.mp4')] # Get video files
|
174 |
+
video_input = gr.Dropdown(choices=video_files, label="Select Video") # Video selection
|
175 |
+
detection_type = gr.Dropdown(choices=["Solar Panel", "Windmill"], label="Detection Type") # Detection type
|
176 |
+
submit_btn = gr.Button("Start Processing") # Trigger button
|
177 |
|
178 |
+
# Connect inputs to outputs with event trigger
|
179 |
submit_btn.click(
|
180 |
fn=process_video,
|
181 |
inputs=[video_input, detection_type],
|
|
|
183 |
_js="() => [document.querySelector('input[type=\"file\"]').value, document.querySelector('select[name=\"detection_type\"]').value]"
|
184 |
)
|
185 |
|
186 |
+
# Launch the Gradio app
|
187 |
demo.launch()
|