File size: 15,524 Bytes
55d75c1 0f14421 55d75c1 6eaeb51 55d75c1 44c37a8 6cf06ca 55d75c1 44c37a8 0f14421 b0610c1 e14631d b7555d0 dfcf9b4 b7555d0 b468ecf 2f58bb4 b468ecf b7555d0 b130955 b7555d0 e14631d 439110e e51e935 439110e a6201ac 8031095 3ae785a 55d75c1 980844c d6d5d58 980844c d6d5d58 55d75c1 d6d5d58 980844c 55d75c1 6eaeb51 aaf98c7 fdc452d 55d75c1 fdc452d 55d75c1 3ae785a 8031095 3ae785a 8031095 a6201ac 439110e 8031095 439110e e14631d 0f14421 e51e935 8b0addf 8031095 195a960 425a4a3 8031095 55d75c1 8031095 8b0addf 47736c9 0db0762 8031095 0f0577d 0db0762 e6e2efa 0db0762 eef7680 0f0577d e6e2efa fc83908 eef7680 0f0577d b0610c1 96e348d b8d0c43 71b7aa3 b8d0c43 a0dfe96 a733a2f 0991489 a733a2f 157c212 a733a2f a0dfe96 ae68ffb a0dfe96 71b7aa3 bc19284 6eaeb51 bc19284 36a3323 397de4d bc19284 ae68ffb bc19284 f39437f bc19284 d6d5d58 07c6a7b 197814b 9c30159 a733a2f 197814b e1929b8 3260d32 d6d5d58 2bca17a 157c212 9c30159 2bca17a 157c212 e6e2efa bc19284 e6e2efa bc19284 71b7aa3 fdc452d bc19284 fdc452d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
###
# Elo based comparison of models
# https://chat.lmsys.org/?leaderboard
###
##
# visual libraries gradio , could be streamlit as well or cl
##
import gradio as gr
##
# Libraries
# Langchain - https://python.langchain.com/docs/get_started/introduction.html
# Used for simplifiing calls, task
##
import langchain
import transformers
# https://huggingface.co/spaces/joyson072/LLm-Langchain/blob/main/app.py
from langchain.llms import HuggingFaceHub
# https://cobusgreyling.medium.com/langchain-creating-large-language-model-llm-applications-via-huggingface-192423883a74
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferMemory
#conversation = ConversationChain(
# llm=llm,
# verbose=True,
# memory=ConversationBufferMemory()
#)
#conversation.predict(input="Hi there!")
# for the chain and prompt
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, SimpleSequentialChain
###################
llm = HuggingFaceHub(
repo_id="google/flan-ul2",
# repo_id="google/flan-t5-small",
model_kwargs={"temperature":0.1,
"max_new_tokens":250})
# Chain 1: Generating a rephrased version of the user's question
template = """{question}\n\n"""
prompt_template = PromptTemplate(input_variables=["question"], template=template)
question_chain = LLMChain(llm=llm, prompt=prompt_template)
# Chain 2: Generating assumptions made in the statement
template = """Here is a statement:
{statement}
Make a bullet point list of the assumptions you made when producing the above statement.\n\n"""
prompt_template = PromptTemplate(input_variables=["statement"], template=template)
assumptions_chain = LLMChain(llm=llm, prompt=prompt_template)
assumptions_chain_seq = SimpleSequentialChain(
chains=[question_chain, assumptions_chain], verbose=True
)
# Chain 3: Fact checking the assumptions
template = """Here is a bullet point list of assertions:
{assertions}
For each assertion, determine whether it is true or false. If it is false, explain why.\n\n"""
prompt_template = PromptTemplate(input_variables=["assertions"], template=template)
fact_checker_chain = LLMChain(llm=llm, prompt=prompt_template)
fact_checker_chain_seq = SimpleSequentialChain(
chains=[question_chain, assumptions_chain, fact_checker_chain], verbose=True
)
# Final Chain: Generating the final answer to the user's question based on the facts and assumptions
template = """In light of the above facts, how would you answer the question '{}'""".format(
"What is the capitol of the usa?"
# user_question
)
template = """{facts}\n""" + template
prompt_template = PromptTemplate(input_variables=["facts"], template=template)
answer_chain = LLMChain(llm=llm, prompt=prompt_template)
overall_chain = SimpleSequentialChain(
chains=[question_chain, assumptions_chain, fact_checker_chain, answer_chain],
verbose=True,
)
#print(overall_chain.run("What is the capitol of the usa?"))
##################
#import model class and tokenizer
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
###
# Definition of different purspose prompts
# https://huggingface.co/spaces/Chris4K/rlhf-arena/edit/main/app.py
####
def prompt_human_instruct(system_msg, history):
return system_msg.strip() + "\n" + \
"\n".join(["\n".join(["###Human: "+item[0], "###Assistant: "+item[1]])
for item in history])
def prompt_instruct(system_msg, history):
return system_msg.strip() + "\n" + \
"\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]])
for item in history])
def prompt_chat(system_msg, history):
return system_msg.strip() + "\n" + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history])
def prompt_roleplay(system_msg, history):
return "<|system|>" + system_msg.strip() + "\n" + \
"\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
for item in history])
####
## Sentinent models
# https://huggingface.co/spaces/CK42/sentiment-model-comparison
# 1, 4 seem best for german
####
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
model_id_2 = "microsoft/deberta-xlarge-mnli"
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
model_id_4 = "lordtt13/emo-mobilebert"
model_id_5 = "juliensimon/reviews-sentiment-analysis"
model_id_6 = "sbcBI/sentiment_analysis_model"
model_id_7 = "oliverguhr/german-sentiment-bert"
# https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld
#llm_hf_sentiment = HuggingFaceHub(
# repo_id= model_id_7,
# model_kwargs={"temperature":0.9 }
#)
from transformers import pipeline
#
## Possible pipeline
#"['audio-classification', 'automatic-speech-recognition', 'conversational', 'depth-estimation', 'document-question-answering',
#'feature-extraction', 'fill-mask', 'image-classification', 'image-segmentation', 'image-to-text', 'mask-generation', 'ner',
#'object-detection', 'question-answering', 'sentiment-analysis', 'summarization', 'table-question-answering', 'text-classification',
#'text-generation', 'text2text-generation', 'token-classification', 'translation', 'video-classification', 'visual-question-answering',
#'vqa', 'zero-shot-audio-classification', 'zero-shot-classification', 'zero-shot-image-classification', 'zero-shot-object-detection',
#'translation_XX_to_YY']"
##
sentiment_pipe = pipeline("sentiment-analysis", model=model_id_7)
#pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
def pipeline_predict_sentiment(text):
sentiment_result = sentiment_pipe(text)
print(sentiment_result)
return sentiment_result
chat_pipe = pipeline("conversational")
def pipeline_predict_chat(text):
sentiment_result = chat_pipe(text)
print(sentiment_result)
return sentiment_result
#['huggingface', 'models', 'spaces']
#sentiment = gr.load(model_id_7, src="huggingface")
#def sentiment (message):
# sentiment_label = sentiment.predict(message)
# print ( sentiment_label)
# return sentiment_label
#sentiment_prompt = PromptTemplate(
# input_variables=["text_input"],
# template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
#)
#def sentiment ( message):
# sentiment_chain = LLMChain(llm=llm_hf_sentiment, prompt=sentiment_prompt)
# facts = sentiment_chain.run(message)
# print(facts)
# return facts
####
## Chat models
# https://huggingface.co/spaces/CK42/sentiment-model-comparison
# 1 seem best for testing
####
chat_model_facebook_blenderbot_400M_distill = "facebook/blenderbot-400M-distill"
chat_model_HenryJJ_vincua_13b = "HenryJJ/vincua-13b"
text = "Why did the chicken cross the road?"
#output_question_1 = llm_hf(text)
#print(output_question_1)
###
## FACT EXTRACTION
###
# https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld
llm_factextract = HuggingFaceHub(
# repo_id="google/flan-ul2",
repo_id="google/flan-t5-small",
model_kwargs={"temperature":0.1,
"max_new_tokens":250})
fact_extraction_prompt = PromptTemplate(
input_variables=["text_input"],
template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
)
def factextraction (message):
fact_extraction_chain = LLMChain(llm=llm_factextract, prompt=fact_extraction_prompt)
facts = fact_extraction_chain.run(message)
print(facts)
return facts
####
## models
# 1 seem best for testing
####
#download and setup the model and tokenizer
model_name_chat = 'facebook/blenderbot-400M-distill'
tokenizer = BlenderbotTokenizer.from_pretrained(model_name_chat)
model_chat = BlenderbotForConditionalGeneration.from_pretrained(model_name_chat)
def func (message):
inputs = tokenizer(message, return_tensors="pt")
result = model_chat.generate(**inputs)
print(result)
return tokenizer.decode(result[0])
title="Conversation Bota"
desc="Some way ... "
app = gr.Interface(
fn=func,
title="Conversation Bota",
inputs=["text", "checkbox", gr.Slider(0, 100)],
outputs=["text", "number"],
)
#####
######
######
examples = [
["Erzähl mit eine Geschichte!",50,2,3,1,"Deutsch"],
["Welche Blumen sollte man jemandem zum Valentinstag schenken?",50,1,0,1,"Deutsch"],
["Please write a step by step recipe to make bolognese pasta!",50,2,3,2,"Englisch"]
]
tDeEn = pipeline(model="Helsinki-NLP/opus-mt-de-en")
tEnDe = pipeline(model="Helsinki-NLP/opus-mt-en-de")
bot = pipeline(model="google/flan-t5-large")
def solve(text,max_length,length_penalty,no_repeat_ngram_size,num_beams,language):
if(language=="Deutsch"):
text=tDeEn(text)[0]["translation_text"]
out=bot(text,max_length=max_length, length_penalty=length_penalty, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, early_stopping=True)[0]["generated_text"]
if(language=="Deutsch"):
out=tEnDe(out)[0]["translation_text"]
return out
task = gr.Interface(
fn=solve,
inputs=[
gr.Textbox(lines=5,max_lines=6,label="Frage"),
gr.Slider(minimum=1.0,maximum=200.0,value=50.0,step=1,interactive=True,label="max_length"),
gr.Slider(minimum=1.0,maximum=20.0,value=1.0,step=1,interactive=True,label="length_penalty"),
gr.Slider(minimum=0.0,maximum=5.0,value=3.0,step=1,interactive=True,label="no_repeat_ngram_size"),
gr.Slider(minimum=1.0,maximum=20.0,value=1.0,step=1,interactive=True,label="num_beams"),
gr.Dropdown(["Deutsch", "Englisch"],value="Deutsch"),
],
outputs="text",
title=title,
description=desc,
examples=examples
)
####
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextIteratorStreamer
from threading import Thread
model_id = "philschmid/instruct-igel-001"
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt_template = f"### Anweisung:\n{{input}}\n\n### Antwort:"
def generate(instruction, temperature=1.0, max_new_tokens=256, top_p=0.9, length_penalty=1.0):
formatted_instruction = prompt_template.format(input=instruction)
# make sure temperature top_p and length_penalty are floats
temperature = float(temperature)
top_p = float(top_p)
length_penalty = float(length_penalty)
# COMMENT IN FOR NON STREAMING
# generation_config = GenerationConfig(
# do_sample=True,
# top_p=top_p,
# top_k=0,
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# early_stopping=True,
# length_penalty=length_penalty,
# eos_token_id=tokenizer.eos_token_id,
# pad_token_id=tokenizer.pad_token_id,
# )
# input_ids = tokenizer(
# formatted_instruction, return_tensors="pt", truncation=True, max_length=2048
# ).input_ids.cuda()
# with torch.inference_mode(), torch.autocast("cuda"):
# outputs = model.generate(input_ids=input_ids, generation_config=generation_config)[0]
# output = tokenizer.decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)
# return output.split("### Antwort:\n")[1]
# STREAMING BASED ON git+https://github.com/gante/transformers.git@streamer_iterator
# streaming
streamer = TextIteratorStreamer(tokenizer)
model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048)
# move to gpu
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
generate_kwargs = dict(
top_p=top_p,
top_k=0,
temperature=temperature,
do_sample=True,
max_new_tokens=max_new_tokens,
early_stopping=True,
length_penalty=length_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
t.start()
output = ""
hidden_output = ""
for new_text in streamer:
# skip streaming until new text is available
if len(hidden_output) <= len(formatted_instruction):
hidden_output += new_text
continue
# replace eos token
if tokenizer.eos_token in new_text:
new_text = new_text.replace(tokenizer.eos_token, "")
output += new_text
yield output
# if HF_TOKEN:
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
return output
#app.launch()
####################
#app_sentiment = gr.Interface(fn=predict , inputs="textbox", outputs="textbox", title="Conversation Bot")
# create a public link, set `share=True` in `launch()
#app_sentiment.launch()
####################
###
###
###
classifier = pipeline("zero-shot-classification")
text = "This is a tutorial about Hugging Face."
candidate_labels = ["informieren", "kaufen", "beschweren", "verkaufen"]
def topic_sale_inform (text):
res = classifier(text, candidate_labels)
print (res)
return res
####
#conversation = Conversation("Welcome")
def callChains(current_message,max_length,length_penalty,no_repeat_ngram_size,num_beams,language):
#final_answer = generate(current_message, 1.0, 256, 0.9, 1.0)
sentiment_analysis_result = pipeline_predict_sentiment(current_message)
topic_sale_inform_result = topic_sale_inform(current_message)
#conversation.append_response("The Big lebowski.")
#conversation.add_user_input("Is it good?")
final_answer = func(current_message)
#final_answer = solve(current_message,max_length,length_penalty,no_repeat_ngram_size,num_beams,language)
return final_answer, sentiment_analysis_result, topic_sale_inform_result
###
current_message_inputfield = gr.Textbox(lines=5,max_lines=6,label="Gib hier eine Nachricht ein")
final_answer_inputfield = gr.Textbox(label="Antwort ", placeholder="Hier kommt die Antwort hin ...")
sentiment_analysis_result_inputfield = gr.Textbox(label="Sentiment ")
topic_sale_inform_result_inputfield = gr.Textbox(label="Thema ")
chat_bot = gr.Interface(fn=callChains ,
inputs=[
current_message_inputfield,
gr.Slider(minimum=1.0,maximum=200.0,value=50.0,step=1,interactive=True,label="max_length"),
gr.Slider(minimum=1.0,maximum=20.0,value=1.0,step=1,interactive=True,label="length_penalty"),
gr.Slider(minimum=0.0,maximum=5.0,value=3.0,step=1,interactive=True,label="no_repeat_ngram_size"),
gr.Slider(minimum=1.0,maximum=20.0,value=1.0,step=1,interactive=True,label="num_beams"),
gr.Dropdown(["Deutsch", "Englisch"],value="Deutsch"),
],
outputs=[final_answer_inputfield,sentiment_analysis_result_inputfield,topic_sale_inform_result_inputfield],
title="Conversation Bot with extra")
# create a public link, set `share=True` in `launch()
chat_bot.launch()
####################
app_facts = gr.Interface(fn=factextraction , inputs="textbox", outputs="textbox", title="Conversation Bots")
# create a public link, set `share=True` in `launch()
#app_facts.launch()
####################
|