Update app.py
Browse files
app.py
CHANGED
@@ -64,26 +64,18 @@ llm_hf_sentiment = HuggingFaceHub(
|
|
64 |
model_kwargs={"temperature":0.9 }
|
65 |
)
|
66 |
|
67 |
-
|
68 |
input_variables=["text_input"],
|
69 |
template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
|
70 |
)
|
71 |
|
72 |
-
def sentiment (
|
73 |
-
sentiment_chain = LLMChain(llm=
|
74 |
facts = sentiment_chain.run(message)
|
75 |
print(facts)
|
76 |
return facts
|
77 |
|
78 |
|
79 |
-
####
|
80 |
-
## models
|
81 |
-
# 1 seem best for testing
|
82 |
-
####
|
83 |
-
#download and setup the model and tokenizer
|
84 |
-
model_name = 'facebook/blenderbot-400M-distill'
|
85 |
-
tokenizer = BlenderbotTokenizer.from_pretrained(model_name)
|
86 |
-
model = BlenderbotForConditionalGeneration.from_pretrained(model_name)
|
87 |
|
88 |
|
89 |
|
@@ -121,12 +113,21 @@ fact_extraction_prompt = PromptTemplate(
|
|
121 |
)
|
122 |
|
123 |
def factextraction (message):
|
124 |
-
fact_extraction_chain = LLMChain(llm=
|
125 |
facts = fact_extraction_chain.run(message)
|
126 |
print(facts)
|
127 |
return facts
|
128 |
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def func (message):
|
131 |
inputs = tokenizer(message, return_tensors="pt")
|
132 |
result = model.generate(**inputs)
|
|
|
64 |
model_kwargs={"temperature":0.9 }
|
65 |
)
|
66 |
|
67 |
+
sentiment_prompt = PromptTemplate(
|
68 |
input_variables=["text_input"],
|
69 |
template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
|
70 |
)
|
71 |
|
72 |
+
def sentiment ( message):
|
73 |
+
sentiment_chain = LLMChain(llm=llm_hf_sentiment, prompt=sentiment_prompt)
|
74 |
facts = sentiment_chain.run(message)
|
75 |
print(facts)
|
76 |
return facts
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
|
|
|
113 |
)
|
114 |
|
115 |
def factextraction (message):
|
116 |
+
fact_extraction_chain = LLMChain(llm=llm_factextract, prompt=fact_extraction_prompt)
|
117 |
facts = fact_extraction_chain.run(message)
|
118 |
print(facts)
|
119 |
return facts
|
120 |
|
121 |
|
122 |
+
####
|
123 |
+
## models
|
124 |
+
# 1 seem best for testing
|
125 |
+
####
|
126 |
+
#download and setup the model and tokenizer
|
127 |
+
model_name = 'facebook/blenderbot-400M-distill'
|
128 |
+
tokenizer = BlenderbotTokenizer.from_pretrained(model_name)
|
129 |
+
model = BlenderbotForConditionalGeneration.from_pretrained(model_name)
|
130 |
+
|
131 |
def func (message):
|
132 |
inputs = tokenizer(message, return_tensors="pt")
|
133 |
result = model.generate(**inputs)
|