File size: 5,701 Bytes
55d75c1
 
0f14421
55d75c1
 
6eaeb51
 
 
 
 
55d75c1
 
 
 
 
44c37a8
6cf06ca
55d75c1
 
44c37a8
0f14421
 
e14631d
 
 
 
 
439110e
 
 
 
e51e935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439110e
a6201ac
 
 
 
 
 
 
 
 
 
 
8031095
 
 
3ae785a
 
 
 
55d75c1
 
 
980844c
 
 
 
 
 
 
 
 
 
 
55d75c1
 
 
980844c
 
 
55d75c1
6eaeb51
aaf98c7
36a3323
55d75c1
 
 
 
 
 
3ae785a
 
 
 
8031095
3ae785a
 
 
 
 
8031095
a6201ac
439110e
8031095
 
 
 
 
 
 
439110e
 
e14631d
8031095
0f14421
a6201ac
 
0f14421
 
e51e935
 
8b0addf
 
 
 
 
 
8031095
 
195a960
425a4a3
 
8031095
55d75c1
8031095
8b0addf
 
 
 
 
47736c9
0db0762
8031095
 
 
0f0577d
 
0db0762
 
 
 
 
 
 
 
 
b8d0c43
0f0577d
 
b8d0c43
0f0577d
6eaeb51
 
b8d0c43
 
 
 
 
6eaeb51
 
b8d0c43
36a3323
0f0577d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
###
# Elo based comparison of models
# https://chat.lmsys.org/?leaderboard
###

## 
# visual libraries gradio , could be streamlit as well or cl
##
import gradio as gr

##
# Libraries
# Langchain - https://python.langchain.com/docs/get_started/introduction.html
# Used for simplifiing calls, task
##
import langchain
import transformers


# https://huggingface.co/spaces/joyson072/LLm-Langchain/blob/main/app.py
from langchain.llms import HuggingFaceHub


# for the chain and prompt
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

#import model class and tokenizer
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration


###
# Definition of different purspose prompts
# https://huggingface.co/spaces/Chris4K/rlhf-arena/edit/main/app.py
####
def prompt_human_instruct(system_msg, history):
    return system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["###Human: "+item[0], "###Assistant: "+item[1]])
        for item in history])


def prompt_instruct(system_msg, history):
    return system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]])
        for item in history])


def prompt_chat(system_msg, history):
    return system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
        for item in history])


def prompt_roleplay(system_msg, history):
    return "<|system|>" + system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
        for item in history])


####
## Sentinent models
# https://huggingface.co/spaces/CK42/sentiment-model-comparison
# 1, 4 seem best for german
####
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
model_id_2 = "microsoft/deberta-xlarge-mnli"
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
model_id_4 = "lordtt13/emo-mobilebert"
model_id_5 = "juliensimon/reviews-sentiment-analysis"
model_id_6 = "sbcBI/sentiment_analysis_model"
model_id_7 = "oliverguhr/german-sentiment-bert"

# https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld
#llm_hf_sentiment = HuggingFaceHub(
#    repo_id= model_id_7,
#    model_kwargs={"temperature":0.9 }
#)

from transformers import pipeline

# 
##
#"['audio-classification', 'automatic-speech-recognition', 'conversational', 'depth-estimation', 'document-question-answering', 
#'feature-extraction', 'fill-mask', 'image-classification', 'image-segmentation', 'image-to-text', 'mask-generation', 'ner', 
#'object-detection', 'question-answering', 'sentiment-analysis', 'summarization', 'table-question-answering', 'text-classification', 
#'text-generation', 'text2text-generation', 'token-classification', 'translation', 'video-classification', 'visual-question-answering', 
#'vqa', 'zero-shot-audio-classification', 'zero-shot-classification', 'zero-shot-image-classification', 'zero-shot-object-detection', 
#'translation_XX_to_YY']"
##

pipe = pipeline("sentiment-analysis", model=model_id_7)
#pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")

def predict(text):
  sentiment_result = pipe(text)[0]["sentiment_text"]
  print(sentiment_result)
  return sentiment_result


#['huggingface', 'models', 'spaces']
sentiment = gr.load(model_id_7, src="huggingface")

def sentiment (message):
  sentiment_label = sentiment.predict(message)
  print ( sentiment_label)
  return sentiment_label

#sentiment_prompt = PromptTemplate(
#    input_variables=["text_input"],
#    template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
#)

#def sentiment (  message):
#  sentiment_chain = LLMChain(llm=llm_hf_sentiment, prompt=sentiment_prompt)
#  facts = sentiment_chain.run(message)
#  print(facts)
#  return facts





####
## Chat models
# https://huggingface.co/spaces/CK42/sentiment-model-comparison
# 1 seem best for testing
####
chat_model_facebook_blenderbot_400M_distill = "facebook/blenderbot-400M-distill"
chat_model_HenryJJ_vincua_13b = "HenryJJ/vincua-13b"





text = "Why did the chicken cross the road?"

#output_question_1 = llm_hf(text)
#print(output_question_1)



###
## FACT EXTRACTION
###
# https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld
llm_factextract = HuggingFaceHub(
    
#    repo_id="google/flan-ul2", 
    repo_id="google/flan-t5-small", 
    model_kwargs={"temperature":0.1,
                  "max_new_tokens":250})
 
fact_extraction_prompt = PromptTemplate(
    input_variables=["text_input"],
    template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
)

def factextraction (message):
  fact_extraction_chain = LLMChain(llm=llm_factextract, prompt=fact_extraction_prompt)
  facts = fact_extraction_chain.run(message)
  print(facts)
  return facts


####
##   models
# 1 seem best for testing
####
#download and setup the model and tokenizer
model_name = 'facebook/blenderbot-400M-distill'
tokenizer = BlenderbotTokenizer.from_pretrained(model_name)
model = BlenderbotForConditionalGeneration.from_pretrained(model_name)

def func (message,text, numb):
  inputs = tokenizer(message, return_tensors="pt")
  result = model.generate(**inputs)
  return tokenizer.decode(result[0]),9



app = gr.Interface(
    fn=func,
    inputs=["text", "checkbox", gr.Slider(0, 100)],
    outputs=["text", "number"],
)


#app = gr.Interface(fn=func , inputs="textbox", outputs="textbox", title="Conversation Bot")
# create a public link, set `share=True` in `launch()
app.launch()