Spaces:
Runtime error
Runtime error
Upload demo.py
Browse files
demo.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
import werkzeug
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
|
| 7 |
+
from config import config, parseArgs, configPDF
|
| 8 |
+
from extract_feature import get_img_feat, build_model
|
| 9 |
+
from main import setSession, loadWeights, setSavers
|
| 10 |
+
from model import MACnet
|
| 11 |
+
from preprocess import Preprocesser
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
def predict(image, question):
|
| 15 |
+
parseArgs()
|
| 16 |
+
configPDF()
|
| 17 |
+
with open(config.configFile(), "a+") as outFile:
|
| 18 |
+
json.dump(vars(config), outFile)
|
| 19 |
+
|
| 20 |
+
if config.gpus != "":
|
| 21 |
+
config.gpusNum = len(config.gpus.split(","))
|
| 22 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
|
| 23 |
+
tf.reset_default_graph()
|
| 24 |
+
tf.Graph().as_default()
|
| 25 |
+
tf.logging.set_verbosity(tf.logging.ERROR)
|
| 26 |
+
cnn_model = build_model()
|
| 27 |
+
imageData = get_img_feat(cnn_model, image)
|
| 28 |
+
|
| 29 |
+
preprocessor = Preprocesser()
|
| 30 |
+
qData, embeddings, answerDict = preprocessor.preprocessData(question)
|
| 31 |
+
model = MACnet(embeddings, answerDict)
|
| 32 |
+
init = tf.global_variables_initializer()
|
| 33 |
+
|
| 34 |
+
savers = setSavers(model)
|
| 35 |
+
saver, emaSaver = savers["saver"], savers["emaSaver"]
|
| 36 |
+
sessionConfig = setSession()
|
| 37 |
+
|
| 38 |
+
data = {'data': qData, 'image': imageData}
|
| 39 |
+
|
| 40 |
+
with tf.Session(config=sessionConfig) as sess:
|
| 41 |
+
sess.graph.finalize()
|
| 42 |
+
|
| 43 |
+
epoch = loadWeights(sess, saver, init)
|
| 44 |
+
emaSaver.restore(sess, config.weightsFile(epoch))
|
| 45 |
+
|
| 46 |
+
evalRes = model.runBatch(sess, data['data'], data['image'], False)
|
| 47 |
+
answer = None
|
| 48 |
+
|
| 49 |
+
if evalRes in ['top', 'bottom']:
|
| 50 |
+
answer = 'The caption at the %s side of the object.' % evalRes
|
| 51 |
+
elif evalRes in ['True', 'False']:
|
| 52 |
+
answer = 'There is at least one title object in this image.'
|
| 53 |
+
else:
|
| 54 |
+
answer = 'This image contain %s specific object(s).' % evalRes
|
| 55 |
+
|
| 56 |
+
return answer
|