Spaces:
Runtime error
Runtime error
Upload extract_feature.py
Browse files- extract_feature.py +51 -0
extract_feature.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse, os, json
|
| 2 |
+
import numpy as np
|
| 3 |
+
from imageio import imread
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torchvision
|
| 8 |
+
import ssl
|
| 9 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def build_model(model='resnet101', model_stage=3):
|
| 13 |
+
cnn = getattr(torchvision.models, model)(pretrained=True)
|
| 14 |
+
layers = [
|
| 15 |
+
cnn.conv1,
|
| 16 |
+
cnn.bn1,
|
| 17 |
+
cnn.relu,
|
| 18 |
+
cnn.maxpool,
|
| 19 |
+
]
|
| 20 |
+
for i in range(model_stage):
|
| 21 |
+
name = 'layer%d' % (i + 1)
|
| 22 |
+
layers.append(getattr(cnn, name))
|
| 23 |
+
model = torch.nn.Sequential(*layers)
|
| 24 |
+
# model.cuda()
|
| 25 |
+
model.eval()
|
| 26 |
+
return model
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def run_image(img, model):
|
| 30 |
+
mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1)
|
| 31 |
+
std = np.array([0.229, 0.224, 0.224]).reshape(1, 3, 1, 1)
|
| 32 |
+
|
| 33 |
+
image = np.concatenate([img], 0).astype(np.float32)
|
| 34 |
+
image = (image / 255.0 - mean) / std
|
| 35 |
+
image = torch.FloatTensor(image)
|
| 36 |
+
image = torch.autograd.Variable(image, volatile=True)
|
| 37 |
+
|
| 38 |
+
feats = model(image)
|
| 39 |
+
feats = feats.data.cpu().clone().numpy()
|
| 40 |
+
|
| 41 |
+
return feats
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_img_feat(cnn_model, img, image_height=224, image_width=224):
|
| 45 |
+
img_size = (image_height, image_width)
|
| 46 |
+
img = np.array(Image.fromarray(np.uint8(img)).resize(img_size))
|
| 47 |
+
img = img.transpose(2, 0, 1)[None]
|
| 48 |
+
feats = run_image(img, cnn_model)
|
| 49 |
+
_, C, H, W = feats.shape
|
| 50 |
+
feat_dset = feats.reshape(1, C, H, W)
|
| 51 |
+
return feat_dset
|