CCockrum's picture
Create app.py
abad8a2 verified
raw
history blame
16.1 kB
import gradio as gr
import requests
import json
import pandas as pd
from datetime import datetime, timedelta
import re
from typing import List, Dict, Tuple
import xml.etree.ElementTree as ET
from collections import Counter
import plotly.express as px
import plotly.graph_objects as go
from transformers import pipeline
import numpy as np
class CancerResearchLiteratureMiner:
def __init__(self):
# Initialize NLP pipelines
try:
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
self.classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except Exception as e:
print(f"Warning: Could not load transformers models: {e}")
self.summarizer = None
self.classifier = None
# Research categories for classification
self.research_categories = [
"drug discovery", "immunotherapy", "chemotherapy", "radiation therapy",
"biomarkers", "diagnostics", "metastasis", "tumor microenvironment",
"animal models", "preclinical studies", "toxicity", "pharmacokinetics"
]
# Animal model keywords
self.animal_keywords = [
"mouse", "mice", "rat", "rats", "xenograft", "orthotopic", "transgenic",
"knockout", "immunodeficient", "nude mice", "SCID", "NOD", "PDX",
"patient-derived xenograft", "syngeneic", "canine", "dog", "feline", "cat"
]
def search_pubmed(self, query: str, max_results: int = 50) -> List[Dict]:
"""Search PubMed for cancer research papers"""
# Enhance query with animal model terms
enhanced_query = f"({query}) AND (animal model OR mouse OR mice OR rat OR xenograft OR preclinical)"
# Search PubMed
search_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
search_params = {
"db": "pubmed",
"term": enhanced_query,
"retmax": max_results,
"retmode": "json",
"sort": "relevance"
}
try:
search_response = requests.get(search_url, params=search_params)
search_data = search_response.json()
if "esearchresult" not in search_data or not search_data["esearchresult"]["idlist"]:
return []
# Get detailed information
ids = search_data["esearchresult"]["idlist"]
fetch_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
fetch_params = {
"db": "pubmed",
"id": ",".join(ids),
"retmode": "xml"
}
fetch_response = requests.get(fetch_url, params=fetch_params)
# Parse XML response
papers = self._parse_pubmed_xml(fetch_response.text)
return papers
except Exception as e:
return [{"error": f"Search failed: {str(e)}"}]
def _parse_pubmed_xml(self, xml_content: str) -> List[Dict]:
"""Parse PubMed XML response"""
papers = []
try:
root = ET.fromstring(xml_content)
for article in root.findall(".//PubmedArticle"):
paper = {}
# Extract basic info
medline = article.find(".//MedlineCitation")
if medline is not None:
pmid = medline.find(".//PMID")
paper["pmid"] = pmid.text if pmid is not None else "N/A"
# Extract title
title = article.find(".//ArticleTitle")
paper["title"] = title.text if title is not None else "N/A"
# Extract abstract
abstract_elem = article.find(".//Abstract/AbstractText")
paper["abstract"] = abstract_elem.text if abstract_elem is not None else "N/A"
# Extract authors
authors = []
for author in article.findall(".//Author"):
fname = author.find(".//ForeName")
lname = author.find(".//LastName")
if fname is not None and lname is not None:
authors.append(f"{fname.text} {lname.text}")
paper["authors"] = ", ".join(authors[:3]) + ("..." if len(authors) > 3 else "")
# Extract journal and date
journal = article.find(".//Journal/Title")
paper["journal"] = journal.text if journal is not None else "N/A"
pub_date = article.find(".//PubDate/Year")
paper["year"] = pub_date.text if pub_date is not None else "N/A"
papers.append(paper)
except Exception as e:
return [{"error": f"XML parsing failed: {str(e)}"}]
return papers
def analyze_papers(self, papers: List[Dict]) -> Dict:
"""Analyze the retrieved papers for insights"""
if not papers or papers[0].get("error"):
return {"error": "No papers to analyze"}
analysis = {
"total_papers": len(papers),
"year_distribution": {},
"animal_models": {},
"research_categories": {},
"key_findings": [],
"drug_mentions": [],
"methodology_trends": {}
}
# Analyze each paper
for paper in papers:
# Year distribution
year = paper.get("year", "Unknown")
analysis["year_distribution"][year] = analysis["year_distribution"].get(year, 0) + 1
# Analyze abstract for animal models and categories
abstract = paper.get("abstract", "").lower()
title = paper.get("title", "").lower()
full_text = f"{title} {abstract}"
# Animal model detection
for animal in self.animal_keywords:
if animal in full_text:
analysis["animal_models"][animal] = analysis["animal_models"].get(animal, 0) + 1
# Extract drug mentions (simple regex for common drug patterns)
drugs = re.findall(r'\b[A-Z][a-z]*(?:mab|nib|ine|ole|cin|tin)\b', paper.get("abstract", ""))
analysis["drug_mentions"].extend(drugs)
# Classify research category if classifier is available
if self.classifier and abstract != "n/a":
try:
result = self.classifier(abstract[:512], self.research_categories)
top_category = result["labels"][0]
analysis["research_categories"][top_category] = analysis["research_categories"].get(top_category, 0) + 1
except Exception:
pass
# Process drug mentions
drug_counter = Counter(analysis["drug_mentions"])
analysis["drug_mentions"] = dict(drug_counter.most_common(10))
return analysis
def generate_summary(self, papers: List[Dict], analysis: Dict) -> str:
"""Generate a comprehensive summary of findings"""
if not papers or papers[0].get("error"):
return "No papers found or error in retrieval."
summary = f"""
# Literature Mining Summary
## Overview
- **Total Papers Found**: {analysis['total_papers']}
- **Search Date**: {datetime.now().strftime('%Y-%m-%d')}
## Key Insights
### Animal Models Used
"""
# Top animal models
if analysis["animal_models"]:
top_models = sorted(analysis["animal_models"].items(), key=lambda x: x[1], reverse=True)[:5]
for model, count in top_models:
summary += f"- **{model.title()}**: {count} papers\n"
summary += "\n### Research Focus Areas\n"
# Research categories
if analysis["research_categories"]:
top_categories = sorted(analysis["research_categories"].items(), key=lambda x: x[1], reverse=True)[:5]
for category, count in top_categories:
summary += f"- **{category.title()}**: {count} papers\n"
summary += "\n### Frequently Mentioned Drugs\n"
# Drug mentions
if analysis["drug_mentions"]:
for drug, count in list(analysis["drug_mentions"].items())[:5]:
summary += f"- **{drug}**: {count} mentions\n"
summary += "\n### Recent Highlights\n"
# Recent papers (last 2 years)
current_year = datetime.now().year
recent_papers = [p for p in papers if p.get("year", "").isdigit() and int(p["year"]) >= current_year - 2]
for paper in recent_papers[:3]:
summary += f"- **{paper.get('title', 'N/A')}** ({paper.get('year', 'N/A')})\n"
summary += f" *{paper.get('journal', 'N/A')}*\n\n"
return summary
def create_visualizations(self, analysis: Dict):
"""Create visualization plots"""
plots = {}
# Year distribution
if analysis["year_distribution"]:
years = list(analysis["year_distribution"].keys())
counts = list(analysis["year_distribution"].values())
fig_year = px.bar(
x=years, y=counts,
title="Publication Year Distribution",
labels={"x": "Year", "y": "Number of Papers"}
)
plots["year_dist"] = fig_year
# Animal models
if analysis["animal_models"]:
models = list(analysis["animal_models"].keys())[:10]
model_counts = [analysis["animal_models"][m] for m in models]
fig_models = px.bar(
x=model_counts, y=models,
orientation='h',
title="Most Common Animal Models",
labels={"x": "Number of Papers", "y": "Animal Model"}
)
plots["animal_models"] = fig_models
# Research categories
if analysis["research_categories"]:
categories = list(analysis["research_categories"].keys())
cat_counts = list(analysis["research_categories"].values())
fig_categories = px.pie(
values=cat_counts, names=categories,
title="Research Focus Distribution"
)
plots["categories"] = fig_categories
return plots
def create_gradio_interface():
"""Create the Gradio interface"""
miner = CancerResearchLiteratureMiner()
def search_and_analyze(query, max_results):
"""Main function to search and analyze literature"""
if not query.strip():
return "Please enter a search query.", None, None, None, None
# Search papers
papers = miner.search_pubmed(query, max_results)
if not papers or papers[0].get("error"):
error_msg = papers[0].get("error", "No papers found") if papers else "No papers found"
return f"Error: {error_msg}", None, None, None, None
# Analyze papers
analysis = miner.analyze_papers(papers)
# Generate summary
summary = miner.generate_summary(papers, analysis)
# Create visualizations
plots = miner.create_visualizations(analysis)
# Create papers dataframe
papers_df = pd.DataFrame([
{
"PMID": p.get("pmid", "N/A"),
"Title": p.get("title", "N/A")[:100] + "..." if len(p.get("title", "")) > 100 else p.get("title", "N/A"),
"Authors": p.get("authors", "N/A"),
"Journal": p.get("journal", "N/A"),
"Year": p.get("year", "N/A")
}
for p in papers
])
return (
summary,
papers_df,
plots.get("year_dist"),
plots.get("animal_models"),
plots.get("categories")
)
# Create interface
with gr.Blocks(title="Cancer Research Literature Mining Agent", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# πŸ”¬ Cancer Research Literature Mining Agent
This AI agent searches and analyzes scientific literature related to cancer research in animal models.
It automatically extracts insights about animal models used, research focus areas, and emerging trends.
**Features:**
- PubMed literature search with animal model focus
- Automatic categorization of research areas
- Drug mention extraction
- Publication trend analysis
- Interactive visualizations
""")
with gr.Row():
with gr.Column(scale=2):
query_input = gr.Textbox(
label="Research Query",
placeholder="e.g., 'breast cancer immunotherapy', 'lung cancer biomarkers', 'pancreatic cancer treatment'",
lines=2
)
max_results = gr.Slider(
minimum=10, maximum=100, value=50, step=10,
label="Maximum Results"
)
search_btn = gr.Button("πŸ” Search & Analyze Literature", variant="primary")
with gr.Column(scale=1):
gr.Markdown("""
### Tips for Better Results:
- Use specific cancer types (e.g., "breast cancer", "melanoma")
- Include treatment modalities (e.g., "immunotherapy", "chemotherapy")
- Add animal model terms (e.g., "mouse model", "xenograft")
""")
with gr.Tabs():
with gr.TabItem("πŸ“Š Summary & Insights"):
summary_output = gr.Markdown(label="Analysis Summary")
with gr.TabItem("πŸ“‹ Papers Found"):
papers_output = gr.Dataframe(
headers=["PMID", "Title", "Authors", "Journal", "Year"],
label="Retrieved Papers"
)
with gr.TabItem("πŸ“ˆ Visualizations"):
with gr.Row():
year_plot = gr.Plot(label="Publication Timeline")
models_plot = gr.Plot(label="Animal Models")
with gr.Row():
categories_plot = gr.Plot(label="Research Categories")
# Connect the search function
search_btn.click(
search_and_analyze,
inputs=[query_input, max_results],
outputs=[summary_output, papers_output, year_plot, models_plot, categories_plot]
)
# Add examples
gr.Examples(
examples=[
["breast cancer immunotherapy mouse model", 50],
["lung cancer biomarkers xenograft", 30],
["pancreatic cancer treatment PDX", 40],
["melanoma drug resistance animal model", 35]
],
inputs=[query_input, max_results]
)
gr.Markdown("""
### About This Agent
This literature mining agent is specifically designed for cancer research in animal models.
It searches PubMed for relevant papers and provides automated analysis of research trends,
commonly used animal models, and emerging therapeutic approaches.
**Data Sources:** PubMed/NCBI databases
**Last Updated:** June 2025
**Supported Research Areas:** All cancer types and animal models
""")
return interface
# Create and launch the interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)