Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import json
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
import re
|
| 7 |
+
from typing import List, Dict, Tuple
|
| 8 |
+
import xml.etree.ElementTree as ET
|
| 9 |
+
from collections import Counter
|
| 10 |
+
import plotly.express as px
|
| 11 |
+
import plotly.graph_objects as go
|
| 12 |
+
from transformers import pipeline
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
class CancerResearchLiteratureMiner:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
# Initialize NLP pipelines
|
| 18 |
+
try:
|
| 19 |
+
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 20 |
+
self.classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 21 |
+
except Exception as e:
|
| 22 |
+
print(f"Warning: Could not load transformers models: {e}")
|
| 23 |
+
self.summarizer = None
|
| 24 |
+
self.classifier = None
|
| 25 |
+
|
| 26 |
+
# Research categories for classification
|
| 27 |
+
self.research_categories = [
|
| 28 |
+
"drug discovery", "immunotherapy", "chemotherapy", "radiation therapy",
|
| 29 |
+
"biomarkers", "diagnostics", "metastasis", "tumor microenvironment",
|
| 30 |
+
"animal models", "preclinical studies", "toxicity", "pharmacokinetics"
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
# Animal model keywords
|
| 34 |
+
self.animal_keywords = [
|
| 35 |
+
"mouse", "mice", "rat", "rats", "xenograft", "orthotopic", "transgenic",
|
| 36 |
+
"knockout", "immunodeficient", "nude mice", "SCID", "NOD", "PDX",
|
| 37 |
+
"patient-derived xenograft", "syngeneic", "canine", "dog", "feline", "cat"
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
def search_pubmed(self, query: str, max_results: int = 50) -> List[Dict]:
|
| 41 |
+
"""Search PubMed for cancer research papers"""
|
| 42 |
+
# Enhance query with animal model terms
|
| 43 |
+
enhanced_query = f"({query}) AND (animal model OR mouse OR mice OR rat OR xenograft OR preclinical)"
|
| 44 |
+
|
| 45 |
+
# Search PubMed
|
| 46 |
+
search_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
| 47 |
+
search_params = {
|
| 48 |
+
"db": "pubmed",
|
| 49 |
+
"term": enhanced_query,
|
| 50 |
+
"retmax": max_results,
|
| 51 |
+
"retmode": "json",
|
| 52 |
+
"sort": "relevance"
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
search_response = requests.get(search_url, params=search_params)
|
| 57 |
+
search_data = search_response.json()
|
| 58 |
+
|
| 59 |
+
if "esearchresult" not in search_data or not search_data["esearchresult"]["idlist"]:
|
| 60 |
+
return []
|
| 61 |
+
|
| 62 |
+
# Get detailed information
|
| 63 |
+
ids = search_data["esearchresult"]["idlist"]
|
| 64 |
+
fetch_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
| 65 |
+
fetch_params = {
|
| 66 |
+
"db": "pubmed",
|
| 67 |
+
"id": ",".join(ids),
|
| 68 |
+
"retmode": "xml"
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
fetch_response = requests.get(fetch_url, params=fetch_params)
|
| 72 |
+
|
| 73 |
+
# Parse XML response
|
| 74 |
+
papers = self._parse_pubmed_xml(fetch_response.text)
|
| 75 |
+
return papers
|
| 76 |
+
|
| 77 |
+
except Exception as e:
|
| 78 |
+
return [{"error": f"Search failed: {str(e)}"}]
|
| 79 |
+
|
| 80 |
+
def _parse_pubmed_xml(self, xml_content: str) -> List[Dict]:
|
| 81 |
+
"""Parse PubMed XML response"""
|
| 82 |
+
papers = []
|
| 83 |
+
try:
|
| 84 |
+
root = ET.fromstring(xml_content)
|
| 85 |
+
|
| 86 |
+
for article in root.findall(".//PubmedArticle"):
|
| 87 |
+
paper = {}
|
| 88 |
+
|
| 89 |
+
# Extract basic info
|
| 90 |
+
medline = article.find(".//MedlineCitation")
|
| 91 |
+
if medline is not None:
|
| 92 |
+
pmid = medline.find(".//PMID")
|
| 93 |
+
paper["pmid"] = pmid.text if pmid is not None else "N/A"
|
| 94 |
+
|
| 95 |
+
# Extract title
|
| 96 |
+
title = article.find(".//ArticleTitle")
|
| 97 |
+
paper["title"] = title.text if title is not None else "N/A"
|
| 98 |
+
|
| 99 |
+
# Extract abstract
|
| 100 |
+
abstract_elem = article.find(".//Abstract/AbstractText")
|
| 101 |
+
paper["abstract"] = abstract_elem.text if abstract_elem is not None else "N/A"
|
| 102 |
+
|
| 103 |
+
# Extract authors
|
| 104 |
+
authors = []
|
| 105 |
+
for author in article.findall(".//Author"):
|
| 106 |
+
fname = author.find(".//ForeName")
|
| 107 |
+
lname = author.find(".//LastName")
|
| 108 |
+
if fname is not None and lname is not None:
|
| 109 |
+
authors.append(f"{fname.text} {lname.text}")
|
| 110 |
+
paper["authors"] = ", ".join(authors[:3]) + ("..." if len(authors) > 3 else "")
|
| 111 |
+
|
| 112 |
+
# Extract journal and date
|
| 113 |
+
journal = article.find(".//Journal/Title")
|
| 114 |
+
paper["journal"] = journal.text if journal is not None else "N/A"
|
| 115 |
+
|
| 116 |
+
pub_date = article.find(".//PubDate/Year")
|
| 117 |
+
paper["year"] = pub_date.text if pub_date is not None else "N/A"
|
| 118 |
+
|
| 119 |
+
papers.append(paper)
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return [{"error": f"XML parsing failed: {str(e)}"}]
|
| 123 |
+
|
| 124 |
+
return papers
|
| 125 |
+
|
| 126 |
+
def analyze_papers(self, papers: List[Dict]) -> Dict:
|
| 127 |
+
"""Analyze the retrieved papers for insights"""
|
| 128 |
+
if not papers or papers[0].get("error"):
|
| 129 |
+
return {"error": "No papers to analyze"}
|
| 130 |
+
|
| 131 |
+
analysis = {
|
| 132 |
+
"total_papers": len(papers),
|
| 133 |
+
"year_distribution": {},
|
| 134 |
+
"animal_models": {},
|
| 135 |
+
"research_categories": {},
|
| 136 |
+
"key_findings": [],
|
| 137 |
+
"drug_mentions": [],
|
| 138 |
+
"methodology_trends": {}
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
# Analyze each paper
|
| 142 |
+
for paper in papers:
|
| 143 |
+
# Year distribution
|
| 144 |
+
year = paper.get("year", "Unknown")
|
| 145 |
+
analysis["year_distribution"][year] = analysis["year_distribution"].get(year, 0) + 1
|
| 146 |
+
|
| 147 |
+
# Analyze abstract for animal models and categories
|
| 148 |
+
abstract = paper.get("abstract", "").lower()
|
| 149 |
+
title = paper.get("title", "").lower()
|
| 150 |
+
full_text = f"{title} {abstract}"
|
| 151 |
+
|
| 152 |
+
# Animal model detection
|
| 153 |
+
for animal in self.animal_keywords:
|
| 154 |
+
if animal in full_text:
|
| 155 |
+
analysis["animal_models"][animal] = analysis["animal_models"].get(animal, 0) + 1
|
| 156 |
+
|
| 157 |
+
# Extract drug mentions (simple regex for common drug patterns)
|
| 158 |
+
drugs = re.findall(r'\b[A-Z][a-z]*(?:mab|nib|ine|ole|cin|tin)\b', paper.get("abstract", ""))
|
| 159 |
+
analysis["drug_mentions"].extend(drugs)
|
| 160 |
+
|
| 161 |
+
# Classify research category if classifier is available
|
| 162 |
+
if self.classifier and abstract != "n/a":
|
| 163 |
+
try:
|
| 164 |
+
result = self.classifier(abstract[:512], self.research_categories)
|
| 165 |
+
top_category = result["labels"][0]
|
| 166 |
+
analysis["research_categories"][top_category] = analysis["research_categories"].get(top_category, 0) + 1
|
| 167 |
+
except Exception:
|
| 168 |
+
pass
|
| 169 |
+
|
| 170 |
+
# Process drug mentions
|
| 171 |
+
drug_counter = Counter(analysis["drug_mentions"])
|
| 172 |
+
analysis["drug_mentions"] = dict(drug_counter.most_common(10))
|
| 173 |
+
|
| 174 |
+
return analysis
|
| 175 |
+
|
| 176 |
+
def generate_summary(self, papers: List[Dict], analysis: Dict) -> str:
|
| 177 |
+
"""Generate a comprehensive summary of findings"""
|
| 178 |
+
if not papers or papers[0].get("error"):
|
| 179 |
+
return "No papers found or error in retrieval."
|
| 180 |
+
|
| 181 |
+
summary = f"""
|
| 182 |
+
# Literature Mining Summary
|
| 183 |
+
|
| 184 |
+
## Overview
|
| 185 |
+
- **Total Papers Found**: {analysis['total_papers']}
|
| 186 |
+
- **Search Date**: {datetime.now().strftime('%Y-%m-%d')}
|
| 187 |
+
|
| 188 |
+
## Key Insights
|
| 189 |
+
|
| 190 |
+
### Animal Models Used
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
# Top animal models
|
| 194 |
+
if analysis["animal_models"]:
|
| 195 |
+
top_models = sorted(analysis["animal_models"].items(), key=lambda x: x[1], reverse=True)[:5]
|
| 196 |
+
for model, count in top_models:
|
| 197 |
+
summary += f"- **{model.title()}**: {count} papers\n"
|
| 198 |
+
|
| 199 |
+
summary += "\n### Research Focus Areas\n"
|
| 200 |
+
|
| 201 |
+
# Research categories
|
| 202 |
+
if analysis["research_categories"]:
|
| 203 |
+
top_categories = sorted(analysis["research_categories"].items(), key=lambda x: x[1], reverse=True)[:5]
|
| 204 |
+
for category, count in top_categories:
|
| 205 |
+
summary += f"- **{category.title()}**: {count} papers\n"
|
| 206 |
+
|
| 207 |
+
summary += "\n### Frequently Mentioned Drugs\n"
|
| 208 |
+
|
| 209 |
+
# Drug mentions
|
| 210 |
+
if analysis["drug_mentions"]:
|
| 211 |
+
for drug, count in list(analysis["drug_mentions"].items())[:5]:
|
| 212 |
+
summary += f"- **{drug}**: {count} mentions\n"
|
| 213 |
+
|
| 214 |
+
summary += "\n### Recent Highlights\n"
|
| 215 |
+
|
| 216 |
+
# Recent papers (last 2 years)
|
| 217 |
+
current_year = datetime.now().year
|
| 218 |
+
recent_papers = [p for p in papers if p.get("year", "").isdigit() and int(p["year"]) >= current_year - 2]
|
| 219 |
+
|
| 220 |
+
for paper in recent_papers[:3]:
|
| 221 |
+
summary += f"- **{paper.get('title', 'N/A')}** ({paper.get('year', 'N/A')})\n"
|
| 222 |
+
summary += f" *{paper.get('journal', 'N/A')}*\n\n"
|
| 223 |
+
|
| 224 |
+
return summary
|
| 225 |
+
|
| 226 |
+
def create_visualizations(self, analysis: Dict):
|
| 227 |
+
"""Create visualization plots"""
|
| 228 |
+
plots = {}
|
| 229 |
+
|
| 230 |
+
# Year distribution
|
| 231 |
+
if analysis["year_distribution"]:
|
| 232 |
+
years = list(analysis["year_distribution"].keys())
|
| 233 |
+
counts = list(analysis["year_distribution"].values())
|
| 234 |
+
|
| 235 |
+
fig_year = px.bar(
|
| 236 |
+
x=years, y=counts,
|
| 237 |
+
title="Publication Year Distribution",
|
| 238 |
+
labels={"x": "Year", "y": "Number of Papers"}
|
| 239 |
+
)
|
| 240 |
+
plots["year_dist"] = fig_year
|
| 241 |
+
|
| 242 |
+
# Animal models
|
| 243 |
+
if analysis["animal_models"]:
|
| 244 |
+
models = list(analysis["animal_models"].keys())[:10]
|
| 245 |
+
model_counts = [analysis["animal_models"][m] for m in models]
|
| 246 |
+
|
| 247 |
+
fig_models = px.bar(
|
| 248 |
+
x=model_counts, y=models,
|
| 249 |
+
orientation='h',
|
| 250 |
+
title="Most Common Animal Models",
|
| 251 |
+
labels={"x": "Number of Papers", "y": "Animal Model"}
|
| 252 |
+
)
|
| 253 |
+
plots["animal_models"] = fig_models
|
| 254 |
+
|
| 255 |
+
# Research categories
|
| 256 |
+
if analysis["research_categories"]:
|
| 257 |
+
categories = list(analysis["research_categories"].keys())
|
| 258 |
+
cat_counts = list(analysis["research_categories"].values())
|
| 259 |
+
|
| 260 |
+
fig_categories = px.pie(
|
| 261 |
+
values=cat_counts, names=categories,
|
| 262 |
+
title="Research Focus Distribution"
|
| 263 |
+
)
|
| 264 |
+
plots["categories"] = fig_categories
|
| 265 |
+
|
| 266 |
+
return plots
|
| 267 |
+
|
| 268 |
+
def create_gradio_interface():
|
| 269 |
+
"""Create the Gradio interface"""
|
| 270 |
+
miner = CancerResearchLiteratureMiner()
|
| 271 |
+
|
| 272 |
+
def search_and_analyze(query, max_results):
|
| 273 |
+
"""Main function to search and analyze literature"""
|
| 274 |
+
if not query.strip():
|
| 275 |
+
return "Please enter a search query.", None, None, None, None
|
| 276 |
+
|
| 277 |
+
# Search papers
|
| 278 |
+
papers = miner.search_pubmed(query, max_results)
|
| 279 |
+
|
| 280 |
+
if not papers or papers[0].get("error"):
|
| 281 |
+
error_msg = papers[0].get("error", "No papers found") if papers else "No papers found"
|
| 282 |
+
return f"Error: {error_msg}", None, None, None, None
|
| 283 |
+
|
| 284 |
+
# Analyze papers
|
| 285 |
+
analysis = miner.analyze_papers(papers)
|
| 286 |
+
|
| 287 |
+
# Generate summary
|
| 288 |
+
summary = miner.generate_summary(papers, analysis)
|
| 289 |
+
|
| 290 |
+
# Create visualizations
|
| 291 |
+
plots = miner.create_visualizations(analysis)
|
| 292 |
+
|
| 293 |
+
# Create papers dataframe
|
| 294 |
+
papers_df = pd.DataFrame([
|
| 295 |
+
{
|
| 296 |
+
"PMID": p.get("pmid", "N/A"),
|
| 297 |
+
"Title": p.get("title", "N/A")[:100] + "..." if len(p.get("title", "")) > 100 else p.get("title", "N/A"),
|
| 298 |
+
"Authors": p.get("authors", "N/A"),
|
| 299 |
+
"Journal": p.get("journal", "N/A"),
|
| 300 |
+
"Year": p.get("year", "N/A")
|
| 301 |
+
}
|
| 302 |
+
for p in papers
|
| 303 |
+
])
|
| 304 |
+
|
| 305 |
+
return (
|
| 306 |
+
summary,
|
| 307 |
+
papers_df,
|
| 308 |
+
plots.get("year_dist"),
|
| 309 |
+
plots.get("animal_models"),
|
| 310 |
+
plots.get("categories")
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Create interface
|
| 314 |
+
with gr.Blocks(title="Cancer Research Literature Mining Agent", theme=gr.themes.Soft()) as interface:
|
| 315 |
+
gr.Markdown("""
|
| 316 |
+
# π¬ Cancer Research Literature Mining Agent
|
| 317 |
+
|
| 318 |
+
This AI agent searches and analyzes scientific literature related to cancer research in animal models.
|
| 319 |
+
It automatically extracts insights about animal models used, research focus areas, and emerging trends.
|
| 320 |
+
|
| 321 |
+
**Features:**
|
| 322 |
+
- PubMed literature search with animal model focus
|
| 323 |
+
- Automatic categorization of research areas
|
| 324 |
+
- Drug mention extraction
|
| 325 |
+
- Publication trend analysis
|
| 326 |
+
- Interactive visualizations
|
| 327 |
+
""")
|
| 328 |
+
|
| 329 |
+
with gr.Row():
|
| 330 |
+
with gr.Column(scale=2):
|
| 331 |
+
query_input = gr.Textbox(
|
| 332 |
+
label="Research Query",
|
| 333 |
+
placeholder="e.g., 'breast cancer immunotherapy', 'lung cancer biomarkers', 'pancreatic cancer treatment'",
|
| 334 |
+
lines=2
|
| 335 |
+
)
|
| 336 |
+
max_results = gr.Slider(
|
| 337 |
+
minimum=10, maximum=100, value=50, step=10,
|
| 338 |
+
label="Maximum Results"
|
| 339 |
+
)
|
| 340 |
+
search_btn = gr.Button("π Search & Analyze Literature", variant="primary")
|
| 341 |
+
|
| 342 |
+
with gr.Column(scale=1):
|
| 343 |
+
gr.Markdown("""
|
| 344 |
+
### Tips for Better Results:
|
| 345 |
+
- Use specific cancer types (e.g., "breast cancer", "melanoma")
|
| 346 |
+
- Include treatment modalities (e.g., "immunotherapy", "chemotherapy")
|
| 347 |
+
- Add animal model terms (e.g., "mouse model", "xenograft")
|
| 348 |
+
""")
|
| 349 |
+
|
| 350 |
+
with gr.Tabs():
|
| 351 |
+
with gr.TabItem("π Summary & Insights"):
|
| 352 |
+
summary_output = gr.Markdown(label="Analysis Summary")
|
| 353 |
+
|
| 354 |
+
with gr.TabItem("π Papers Found"):
|
| 355 |
+
papers_output = gr.Dataframe(
|
| 356 |
+
headers=["PMID", "Title", "Authors", "Journal", "Year"],
|
| 357 |
+
label="Retrieved Papers"
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
with gr.TabItem("π Visualizations"):
|
| 361 |
+
with gr.Row():
|
| 362 |
+
year_plot = gr.Plot(label="Publication Timeline")
|
| 363 |
+
models_plot = gr.Plot(label="Animal Models")
|
| 364 |
+
with gr.Row():
|
| 365 |
+
categories_plot = gr.Plot(label="Research Categories")
|
| 366 |
+
|
| 367 |
+
# Connect the search function
|
| 368 |
+
search_btn.click(
|
| 369 |
+
search_and_analyze,
|
| 370 |
+
inputs=[query_input, max_results],
|
| 371 |
+
outputs=[summary_output, papers_output, year_plot, models_plot, categories_plot]
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
# Add examples
|
| 375 |
+
gr.Examples(
|
| 376 |
+
examples=[
|
| 377 |
+
["breast cancer immunotherapy mouse model", 50],
|
| 378 |
+
["lung cancer biomarkers xenograft", 30],
|
| 379 |
+
["pancreatic cancer treatment PDX", 40],
|
| 380 |
+
["melanoma drug resistance animal model", 35]
|
| 381 |
+
],
|
| 382 |
+
inputs=[query_input, max_results]
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
gr.Markdown("""
|
| 386 |
+
### About This Agent
|
| 387 |
+
This literature mining agent is specifically designed for cancer research in animal models.
|
| 388 |
+
It searches PubMed for relevant papers and provides automated analysis of research trends,
|
| 389 |
+
commonly used animal models, and emerging therapeutic approaches.
|
| 390 |
+
|
| 391 |
+
**Data Sources:** PubMed/NCBI databases
|
| 392 |
+
**Last Updated:** June 2025
|
| 393 |
+
**Supported Research Areas:** All cancer types and animal models
|
| 394 |
+
""")
|
| 395 |
+
|
| 396 |
+
return interface
|
| 397 |
+
|
| 398 |
+
# Create and launch the interface
|
| 399 |
+
if __name__ == "__main__":
|
| 400 |
+
interface = create_gradio_interface()
|
| 401 |
+
interface.launch(
|
| 402 |
+
server_name="0.0.0.0",
|
| 403 |
+
server_port=7860,
|
| 404 |
+
share=True
|
| 405 |
+
)
|