Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- finetune_llama3.py +254 -0
- pdf_processor.py +112 -0
finetune_llama3.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import json
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from typing import Dict, List, Any
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
import datasets
|
| 9 |
+
from transformers import AutoTokenizer, TrainingArguments
|
| 10 |
+
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
|
| 11 |
+
from trl import SFTTrainer
|
| 12 |
+
import torch
|
| 13 |
+
except ImportError:
|
| 14 |
+
print("Installing required packages...")
|
| 15 |
+
import subprocess
|
| 16 |
+
subprocess.check_call(["pip", "install",
|
| 17 |
+
"transformers>=4.36.0",
|
| 18 |
+
"peft>=0.7.0",
|
| 19 |
+
"datasets>=2.14.0",
|
| 20 |
+
"accelerate>=0.25.0",
|
| 21 |
+
"trl>=0.7.1",
|
| 22 |
+
"bitsandbytes>=0.40.0",
|
| 23 |
+
"torch>=2.0.0"])
|
| 24 |
+
import datasets
|
| 25 |
+
from transformers import AutoTokenizer, TrainingArguments
|
| 26 |
+
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
|
| 27 |
+
from trl import SFTTrainer
|
| 28 |
+
import torch
|
| 29 |
+
|
| 30 |
+
def load_model_and_tokenizer(model_name_or_path: str,
|
| 31 |
+
adapter_path: str = None,
|
| 32 |
+
quantize: bool = True,
|
| 33 |
+
token: str = None):
|
| 34 |
+
"""
|
| 35 |
+
Load the model and tokenizer, with optional adapter and quantization.
|
| 36 |
+
|
| 37 |
+
This will load the model in 4-bit quantization by default (which is needed
|
| 38 |
+
for such a large model) and can optionally load an existing adapter.
|
| 39 |
+
"""
|
| 40 |
+
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
|
| 41 |
+
|
| 42 |
+
print(f"Loading model: {model_name_or_path}")
|
| 43 |
+
|
| 44 |
+
# Configure for quantization
|
| 45 |
+
quantization_config = BitsAndBytesConfig(
|
| 46 |
+
load_in_4bit=quantize,
|
| 47 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 48 |
+
bnb_4bit_quant_type="nf4",
|
| 49 |
+
bnb_4bit_use_double_quant=True
|
| 50 |
+
) if quantize else None
|
| 51 |
+
|
| 52 |
+
# Load the model
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
model_name_or_path,
|
| 55 |
+
quantization_config=quantization_config,
|
| 56 |
+
device_map="auto",
|
| 57 |
+
token=token
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Load adapter if provided
|
| 61 |
+
if adapter_path:
|
| 62 |
+
print(f"Loading adapter from {adapter_path}")
|
| 63 |
+
from peft import PeftModel
|
| 64 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
| 65 |
+
|
| 66 |
+
# Load tokenizer
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, token=token)
|
| 68 |
+
|
| 69 |
+
# Ensure we have a pad token
|
| 70 |
+
if tokenizer.pad_token is None:
|
| 71 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 72 |
+
|
| 73 |
+
return model, tokenizer
|
| 74 |
+
|
| 75 |
+
def prepare_dataset(data_path: str):
|
| 76 |
+
"""Load and prepare datasets from JSON files."""
|
| 77 |
+
# Load datasets
|
| 78 |
+
if os.path.isdir(data_path):
|
| 79 |
+
train_path = os.path.join(data_path, "train.json")
|
| 80 |
+
val_path = os.path.join(data_path, "validation.json")
|
| 81 |
+
|
| 82 |
+
if not (os.path.exists(train_path) and os.path.exists(val_path)):
|
| 83 |
+
raise ValueError(f"Training data files not found in {data_path}")
|
| 84 |
+
else:
|
| 85 |
+
raise ValueError(f"Data path {data_path} is not a directory")
|
| 86 |
+
|
| 87 |
+
# Load JSON files
|
| 88 |
+
with open(train_path, 'r', encoding='utf-8') as f:
|
| 89 |
+
train_data = json.load(f)
|
| 90 |
+
|
| 91 |
+
with open(val_path, 'r', encoding='utf-8') as f:
|
| 92 |
+
val_data = json.load(f)
|
| 93 |
+
|
| 94 |
+
# Convert to datasets
|
| 95 |
+
train_dataset = datasets.Dataset.from_list(train_data)
|
| 96 |
+
eval_dataset = datasets.Dataset.from_list(val_data)
|
| 97 |
+
|
| 98 |
+
print(f"Loaded {len(train_dataset)} training examples and {len(eval_dataset)} validation examples")
|
| 99 |
+
return train_dataset, eval_dataset
|
| 100 |
+
|
| 101 |
+
def finetune(
|
| 102 |
+
model_name: str,
|
| 103 |
+
dataset_path: str,
|
| 104 |
+
output_dir: str,
|
| 105 |
+
hub_model_id: str = None,
|
| 106 |
+
hf_token: str = None,
|
| 107 |
+
use_peft: bool = True,
|
| 108 |
+
num_train_epochs: int = 3,
|
| 109 |
+
learning_rate: float = 2e-5,
|
| 110 |
+
bf16: bool = True,
|
| 111 |
+
quantize: bool = True,
|
| 112 |
+
max_seq_length: int = 2048,
|
| 113 |
+
gradient_accumulation_steps: int = 2
|
| 114 |
+
):
|
| 115 |
+
"""Fine-tune the model with PEFT on the provided dataset."""
|
| 116 |
+
# Set up output directory
|
| 117 |
+
if not output_dir:
|
| 118 |
+
output_dir = f"llama3-finetuned-{datetime.now().strftime('%Y-%m-%d-%H-%M')}"
|
| 119 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 120 |
+
|
| 121 |
+
# Load datasets
|
| 122 |
+
train_dataset, eval_dataset = prepare_dataset(dataset_path)
|
| 123 |
+
|
| 124 |
+
# Load base model
|
| 125 |
+
model, tokenizer = load_model_and_tokenizer(
|
| 126 |
+
model_name,
|
| 127 |
+
quantize=quantize,
|
| 128 |
+
token=hf_token
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Set up PEFT configuration if using PEFT
|
| 132 |
+
if use_peft:
|
| 133 |
+
print("Setting up PEFT (Parameter-Efficient Fine-Tuning)")
|
| 134 |
+
|
| 135 |
+
# Prepare model for k-bit training if quantized
|
| 136 |
+
if quantize:
|
| 137 |
+
model = prepare_model_for_kbit_training(model)
|
| 138 |
+
|
| 139 |
+
# Set up LoRA configuration
|
| 140 |
+
peft_config = LoraConfig(
|
| 141 |
+
r=16, # Rank dimension
|
| 142 |
+
lora_alpha=32, # Scale parameter
|
| 143 |
+
lora_dropout=0.05,
|
| 144 |
+
bias="none",
|
| 145 |
+
task_type="CAUSAL_LM",
|
| 146 |
+
target_modules=[
|
| 147 |
+
"q_proj",
|
| 148 |
+
"k_proj",
|
| 149 |
+
"v_proj",
|
| 150 |
+
"o_proj",
|
| 151 |
+
"gate_proj",
|
| 152 |
+
"up_proj",
|
| 153 |
+
"down_proj"
|
| 154 |
+
]
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
peft_config = None
|
| 158 |
+
|
| 159 |
+
# Training arguments
|
| 160 |
+
training_args = TrainingArguments(
|
| 161 |
+
output_dir=output_dir,
|
| 162 |
+
num_train_epochs=num_train_epochs,
|
| 163 |
+
per_device_train_batch_size=1, # Adjust based on GPU memory
|
| 164 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 165 |
+
learning_rate=learning_rate,
|
| 166 |
+
weight_decay=0.01,
|
| 167 |
+
max_grad_norm=0.3,
|
| 168 |
+
logging_steps=10,
|
| 169 |
+
optim="paged_adamw_32bit",
|
| 170 |
+
lr_scheduler_type="cosine",
|
| 171 |
+
warmup_ratio=0.03,
|
| 172 |
+
evaluation_strategy="steps",
|
| 173 |
+
eval_steps=0.1, # Evaluate every 10% of training
|
| 174 |
+
save_strategy="steps",
|
| 175 |
+
save_steps=0.1, # Save every 10% of training
|
| 176 |
+
save_total_limit=3,
|
| 177 |
+
bf16=bf16, # Use bfloat16 precision if available
|
| 178 |
+
push_to_hub=bool(hub_model_id),
|
| 179 |
+
hub_model_id=hub_model_id,
|
| 180 |
+
hub_token=hf_token,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Initialize the SFT trainer
|
| 184 |
+
trainer = SFTTrainer(
|
| 185 |
+
model=model,
|
| 186 |
+
args=training_args,
|
| 187 |
+
train_dataset=train_dataset,
|
| 188 |
+
eval_dataset=eval_dataset,
|
| 189 |
+
peft_config=peft_config,
|
| 190 |
+
tokenizer=tokenizer,
|
| 191 |
+
max_seq_length=max_seq_length,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Train the model
|
| 195 |
+
print("Starting training...")
|
| 196 |
+
trainer.train()
|
| 197 |
+
|
| 198 |
+
# Save the fine-tuned model
|
| 199 |
+
print(f"Saving model to {output_dir}")
|
| 200 |
+
trainer.save_model()
|
| 201 |
+
|
| 202 |
+
# Push to hub if specified
|
| 203 |
+
if hub_model_id and hf_token:
|
| 204 |
+
print(f"Pushing model to Hugging Face Hub: {hub_model_id}")
|
| 205 |
+
trainer.push_to_hub()
|
| 206 |
+
|
| 207 |
+
return output_dir
|
| 208 |
+
|
| 209 |
+
if __name__ == "__main__":
|
| 210 |
+
parser = argparse.ArgumentParser(description="Fine-tune Llama 3.3 with your data")
|
| 211 |
+
parser.add_argument("--model_name", type=str, default="nvidia/Llama-3_3-Nemotron-Super-49B-v1",
|
| 212 |
+
help="Base model to fine-tune")
|
| 213 |
+
parser.add_argument("--dataset_path", type=str, required=True,
|
| 214 |
+
help="Path to the directory containing train.json and validation.json")
|
| 215 |
+
parser.add_argument("--output_dir", type=str, default=None,
|
| 216 |
+
help="Directory to save the fine-tuned model")
|
| 217 |
+
parser.add_argument("--hub_model_id", type=str, default=None,
|
| 218 |
+
help="Hugging Face Hub model ID to push the model to")
|
| 219 |
+
parser.add_argument("--hf_token", type=str, default=None,
|
| 220 |
+
help="Hugging Face token for accessing gated models and pushing to hub")
|
| 221 |
+
parser.add_argument("--no_peft", action='store_true',
|
| 222 |
+
help="Disable PEFT/LoRA (not recommended for large models)")
|
| 223 |
+
parser.add_argument("--no_quantize", action='store_true',
|
| 224 |
+
help="Disable quantization (requires much more VRAM)")
|
| 225 |
+
parser.add_argument("--no_bf16", action='store_true',
|
| 226 |
+
help="Disable bf16 precision")
|
| 227 |
+
parser.add_argument("--epochs", type=int, default=3,
|
| 228 |
+
help="Number of training epochs")
|
| 229 |
+
parser.add_argument("--learning_rate", type=float, default=2e-5,
|
| 230 |
+
help="Learning rate")
|
| 231 |
+
parser.add_argument("--max_seq_length", type=int, default=2048,
|
| 232 |
+
help="Maximum sequence length for training")
|
| 233 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=2,
|
| 234 |
+
help="Gradient accumulation steps")
|
| 235 |
+
|
| 236 |
+
args = parser.parse_args()
|
| 237 |
+
|
| 238 |
+
# Get token from environment if not provided
|
| 239 |
+
hf_token = args.hf_token or os.environ.get("HF_TOKEN")
|
| 240 |
+
|
| 241 |
+
finetune(
|
| 242 |
+
model_name=args.model_name,
|
| 243 |
+
dataset_path=args.dataset_path,
|
| 244 |
+
output_dir=args.output_dir,
|
| 245 |
+
hub_model_id=args.hub_model_id,
|
| 246 |
+
hf_token=hf_token,
|
| 247 |
+
use_peft=not args.no_peft,
|
| 248 |
+
num_train_epochs=args.epochs,
|
| 249 |
+
learning_rate=args.learning_rate,
|
| 250 |
+
bf16=not args.no_bf16,
|
| 251 |
+
quantize=not args.no_quantize,
|
| 252 |
+
max_seq_length=args.max_seq_length,
|
| 253 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps
|
| 254 |
+
)
|
pdf_processor.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import List, Dict, Any
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
from PyPDF2 import PdfReader
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
except ImportError:
|
| 11 |
+
print("Installing required dependencies...")
|
| 12 |
+
import subprocess
|
| 13 |
+
subprocess.check_call(["pip", "install", "PyPDF2", "tqdm"])
|
| 14 |
+
from PyPDF2 import PdfReader
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
|
| 17 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
| 18 |
+
"""Extract text from a PDF file."""
|
| 19 |
+
try:
|
| 20 |
+
reader = PdfReader(pdf_path)
|
| 21 |
+
text = ""
|
| 22 |
+
for page in reader.pages:
|
| 23 |
+
text += page.extract_text() + "\n"
|
| 24 |
+
return text
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error extracting text from {pdf_path}: {e}")
|
| 27 |
+
return ""
|
| 28 |
+
|
| 29 |
+
def process_pdfs(pdf_dir: str, output_dir: str, chunk_size: int = 1000) -> List[Dict[str, Any]]:
|
| 30 |
+
"""Process all PDFs in a directory and save the extracted text."""
|
| 31 |
+
pdf_files = list(Path(pdf_dir).glob("*.pdf"))
|
| 32 |
+
|
| 33 |
+
if not pdf_files:
|
| 34 |
+
raise ValueError(f"No PDF files found in {pdf_dir}")
|
| 35 |
+
|
| 36 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 37 |
+
|
| 38 |
+
all_data = []
|
| 39 |
+
|
| 40 |
+
for pdf_file in tqdm(pdf_files, desc="Processing PDFs"):
|
| 41 |
+
try:
|
| 42 |
+
file_name = pdf_file.stem
|
| 43 |
+
print(f"Processing {file_name}")
|
| 44 |
+
|
| 45 |
+
text = extract_text_from_pdf(str(pdf_file))
|
| 46 |
+
if not text.strip():
|
| 47 |
+
print(f"Warning: No text extracted from {file_name}")
|
| 48 |
+
continue
|
| 49 |
+
|
| 50 |
+
# Split into chunks to avoid context length issues
|
| 51 |
+
words = text.split()
|
| 52 |
+
for i in range(0, len(words), chunk_size):
|
| 53 |
+
chunk = " ".join(words[i:i+chunk_size])
|
| 54 |
+
if len(chunk.strip()) > 100: # Ensure chunk has enough content
|
| 55 |
+
data_point = {
|
| 56 |
+
"text": chunk,
|
| 57 |
+
"source": file_name,
|
| 58 |
+
"chunk_id": i // chunk_size
|
| 59 |
+
}
|
| 60 |
+
all_data.append(data_point)
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error processing {pdf_file}: {e}")
|
| 64 |
+
|
| 65 |
+
# Save all data to a single JSON file
|
| 66 |
+
with open(os.path.join(output_dir, "pdf_data.json"), "w", encoding="utf-8") as f:
|
| 67 |
+
json.dump(all_data, f, ensure_ascii=False, indent=2)
|
| 68 |
+
|
| 69 |
+
print(f"Processed {len(pdf_files)} PDFs into {len(all_data)} text chunks")
|
| 70 |
+
return all_data
|
| 71 |
+
|
| 72 |
+
def prepare_training_data(pdf_data: List[Dict[str, Any]], output_dir: str):
|
| 73 |
+
"""Prepare data in the format needed for fine-tuning LLMs."""
|
| 74 |
+
training_data = []
|
| 75 |
+
|
| 76 |
+
for item in pdf_data:
|
| 77 |
+
# Format for instruction fine-tuning
|
| 78 |
+
train_item = {
|
| 79 |
+
"instruction": "Use the following text from the document to answer questions or generate content about the topics it covers.",
|
| 80 |
+
"input": item["text"][:500], # Use beginning of text as input
|
| 81 |
+
"output": item["text"][500:], # Use rest of text as output
|
| 82 |
+
}
|
| 83 |
+
training_data.append(train_item)
|
| 84 |
+
|
| 85 |
+
# Create train/validation split (90/10)
|
| 86 |
+
split_idx = int(len(training_data) * 0.9)
|
| 87 |
+
train_data = training_data[:split_idx]
|
| 88 |
+
val_data = training_data[split_idx:]
|
| 89 |
+
|
| 90 |
+
# Save splits
|
| 91 |
+
os.makedirs(os.path.join(output_dir, "training_data"), exist_ok=True)
|
| 92 |
+
|
| 93 |
+
with open(os.path.join(output_dir, "training_data", "train.json"), "w", encoding="utf-8") as f:
|
| 94 |
+
json.dump(train_data, f, ensure_ascii=False, indent=2)
|
| 95 |
+
|
| 96 |
+
with open(os.path.join(output_dir, "training_data", "validation.json"), "w", encoding="utf-8") as f:
|
| 97 |
+
json.dump(val_data, f, ensure_ascii=False, indent=2)
|
| 98 |
+
|
| 99 |
+
print(f"Created training dataset: {len(train_data)} train, {len(val_data)} validation examples")
|
| 100 |
+
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
+
parser = argparse.ArgumentParser(description="Process PDFs and prepare training data")
|
| 103 |
+
parser.add_argument("--pdf_dir", type=str, required=True, help="Directory containing PDF files")
|
| 104 |
+
parser.add_argument("--output_dir", type=str, default="processed_data", help="Output directory for processed data")
|
| 105 |
+
parser.add_argument("--chunk_size", type=int, default=1000, help="Number of words per chunk")
|
| 106 |
+
|
| 107 |
+
args = parser.parse_args()
|
| 108 |
+
|
| 109 |
+
pdf_data = process_pdfs(args.pdf_dir, args.output_dir, args.chunk_size)
|
| 110 |
+
prepare_training_data(pdf_data, args.output_dir)
|
| 111 |
+
|
| 112 |
+
print("PDF processing complete. Data is ready for fine-tuning.")
|