Spaces:
Runtime error
Runtime error
Commit
·
c3dfa5f
1
Parent(s):
6ccc1d7
Update space
Browse files- app.py +249 -21
- requirements.txt +11 -1
app.py
CHANGED
@@ -1,11 +1,88 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
-
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -17,6 +94,7 @@ def respond(
|
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
@@ -27,6 +105,7 @@ def respond(
|
|
27 |
|
28 |
response = ""
|
29 |
|
|
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -39,26 +118,175 @@ def respond(
|
|
39 |
response += token
|
40 |
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import subprocess
|
6 |
+
import threading
|
7 |
+
import uuid
|
8 |
+
from pathlib import Path
|
9 |
+
from huggingface_hub import InferenceClient, HfFolder
|
10 |
|
11 |
"""
|
12 |
+
Shedify app - Using fine-tuned Llama 3.3 49B for document assistance
|
13 |
"""
|
|
|
14 |
|
15 |
+
# Model settings
|
16 |
+
DEFAULT_MODEL = "Borislav18/Shedify" # Your Hugging Face username/model name
|
17 |
+
LOCAL_MODEL = os.environ.get("LOCAL_MODEL", None) # Set this if testing locally
|
18 |
+
|
19 |
+
# Get Hugging Face token
|
20 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
21 |
+
|
22 |
+
# App title and description
|
23 |
+
title = "Shedify - Document Assistant powered by Llama 3.3"
|
24 |
+
description = """
|
25 |
+
This app uses a fine-tuned version of Llama 3.3 49B model trained on your documents.
|
26 |
+
Ask questions about the documents, generate insights, or request summaries!
|
27 |
+
"""
|
28 |
+
|
29 |
+
# Initialize inference client with your model
|
30 |
+
client = InferenceClient(
|
31 |
+
DEFAULT_MODEL,
|
32 |
+
token=HF_TOKEN,
|
33 |
+
)
|
34 |
+
|
35 |
+
# Training status tracking
|
36 |
+
class TrainingState:
|
37 |
+
def __init__(self):
|
38 |
+
self.status = "idle" # idle, running, success, failed
|
39 |
+
self.progress = 0.0 # 0.0 to 1.0
|
40 |
+
self.message = ""
|
41 |
+
self.id = str(uuid.uuid4())[:8] # Generate a unique ID for this session
|
42 |
+
|
43 |
+
# Check if state file exists and load it
|
44 |
+
self.state_file = Path("training_state.json")
|
45 |
+
self.load_state()
|
46 |
+
|
47 |
+
def load_state(self):
|
48 |
+
"""Load state from file if it exists"""
|
49 |
+
if self.state_file.exists():
|
50 |
+
try:
|
51 |
+
with open(self.state_file, "r") as f:
|
52 |
+
state = json.load(f)
|
53 |
+
self.status = state.get("status", "idle")
|
54 |
+
self.progress = state.get("progress", 0.0)
|
55 |
+
self.message = state.get("message", "")
|
56 |
+
self.id = state.get("id", self.id)
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error loading state: {e}")
|
59 |
+
|
60 |
+
def save_state(self):
|
61 |
+
"""Save current state to file"""
|
62 |
+
try:
|
63 |
+
with open(self.state_file, "w") as f:
|
64 |
+
json.dump({
|
65 |
+
"status": self.status,
|
66 |
+
"progress": self.progress,
|
67 |
+
"message": self.message,
|
68 |
+
"id": self.id
|
69 |
+
}, f)
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error saving state: {e}")
|
72 |
+
|
73 |
+
def update(self, status=None, progress=None, message=None):
|
74 |
+
"""Update state and save it"""
|
75 |
+
if status is not None:
|
76 |
+
self.status = status
|
77 |
+
if progress is not None:
|
78 |
+
self.progress = progress
|
79 |
+
if message is not None:
|
80 |
+
self.message = message
|
81 |
+
self.save_state()
|
82 |
+
return self.status, self.progress, self.message
|
83 |
+
|
84 |
+
# Initialize the training state
|
85 |
+
training_state = TrainingState()
|
86 |
|
87 |
def respond(
|
88 |
message,
|
|
|
94 |
):
|
95 |
messages = [{"role": "system", "content": system_message}]
|
96 |
|
97 |
+
# Format history to match chat completion format
|
98 |
for val in history:
|
99 |
if val[0]:
|
100 |
messages.append({"role": "user", "content": val[0]})
|
|
|
105 |
|
106 |
response = ""
|
107 |
|
108 |
+
# Use streaming to get real-time responses
|
109 |
for message in client.chat_completion(
|
110 |
messages,
|
111 |
max_tokens=max_tokens,
|
|
|
118 |
response += token
|
119 |
yield response
|
120 |
|
121 |
+
def run_training_process(pdf_dir, output_name, progress_callback):
|
122 |
+
"""Run the PDF processing and fine-tuning process"""
|
123 |
+
try:
|
124 |
+
# Create processed_data directory if it doesn't exist
|
125 |
+
os.makedirs("processed_data", exist_ok=True)
|
126 |
+
|
127 |
+
# Update state
|
128 |
+
progress_callback("running", 0.05, "Processing PDFs...")
|
129 |
+
|
130 |
+
# Process PDFs
|
131 |
+
pdf_process = subprocess.run(
|
132 |
+
["python", "pdf_processor.py", "--pdf_dir", pdf_dir, "--output_dir", "processed_data"],
|
133 |
+
capture_output=True,
|
134 |
+
text=True
|
135 |
+
)
|
136 |
+
|
137 |
+
if pdf_process.returncode != 0:
|
138 |
+
progress_callback("failed", 0.0, f"PDF processing failed: {pdf_process.stderr}")
|
139 |
+
return False
|
140 |
+
|
141 |
+
# Update state
|
142 |
+
progress_callback("running", 0.3, "PDFs processed. Starting fine-tuning...")
|
143 |
+
|
144 |
+
# Get Hugging Face token
|
145 |
+
hf_token = HF_TOKEN or HfFolder.get_token()
|
146 |
+
if not hf_token:
|
147 |
+
progress_callback("failed", 0.0, "No Hugging Face token found. Please set the HF_TOKEN environment variable.")
|
148 |
+
return False
|
149 |
+
|
150 |
+
# Run fine-tuning
|
151 |
+
finetune_process = subprocess.run(
|
152 |
+
[
|
153 |
+
"python", "finetune_llama3.py",
|
154 |
+
"--dataset_path", "processed_data/training_data",
|
155 |
+
"--hub_model_id", f"Borislav18/{output_name}",
|
156 |
+
"--epochs", "1", # Starting with 1 epoch for quicker feedback
|
157 |
+
"--gradient_accumulation_steps", "4"
|
158 |
+
],
|
159 |
+
env={**os.environ, "HF_TOKEN": hf_token},
|
160 |
+
capture_output=True,
|
161 |
+
text=True
|
162 |
+
)
|
163 |
+
|
164 |
+
if finetune_process.returncode != 0:
|
165 |
+
progress_callback("failed", 0.0, f"Fine-tuning failed: {finetune_process.stderr}")
|
166 |
+
return False
|
167 |
+
|
168 |
+
# Update state
|
169 |
+
progress_callback("success", 1.0, f"Training complete! Model pushed to Hugging Face as Borislav18/{output_name}")
|
170 |
+
return True
|
171 |
+
|
172 |
+
except Exception as e:
|
173 |
+
progress_callback("failed", 0.0, f"Training process failed with error: {str(e)}")
|
174 |
+
return False
|
175 |
+
|
176 |
+
def training_thread(pdf_dir, output_name):
|
177 |
+
"""Background thread for running training"""
|
178 |
+
def progress_callback(status, progress, message):
|
179 |
+
training_state.update(status, progress, message)
|
180 |
+
|
181 |
+
# Simulate progress updates for UI feedback
|
182 |
+
progress_callback("running", 0.01, "Starting training process...")
|
183 |
+
|
184 |
+
# Run the actual training process
|
185 |
+
run_training_process(pdf_dir, output_name, progress_callback)
|
186 |
+
|
187 |
+
def start_training(pdf_dir, output_name):
|
188 |
+
"""Start the training process in a background thread"""
|
189 |
+
if not pdf_dir or not output_name:
|
190 |
+
return "Please provide both a PDF directory and output model name", 0.0, "idle"
|
191 |
+
|
192 |
+
# Check if already running
|
193 |
+
if training_state.status == "running":
|
194 |
+
return f"Training already in progress: {training_state.message}", training_state.progress, training_state.status
|
195 |
+
|
196 |
+
# Start background thread
|
197 |
+
thread = threading.Thread(
|
198 |
+
target=training_thread,
|
199 |
+
args=(pdf_dir, output_name),
|
200 |
+
daemon=True
|
201 |
+
)
|
202 |
+
thread.start()
|
203 |
+
|
204 |
+
return "Training started...", 0.0, "running"
|
205 |
+
|
206 |
+
def get_training_status():
|
207 |
+
"""Get the current training status for UI updates"""
|
208 |
+
return training_state.message, training_state.progress, training_state.status
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
# Create the main application
|
212 |
+
with gr.Blocks(title="Shedify - Document Assistant") as demo:
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Column(scale=2):
|
215 |
+
gr.Markdown(f"# {title}")
|
216 |
+
gr.Markdown(description)
|
217 |
+
|
218 |
+
with gr.Column(scale=1):
|
219 |
+
# Training controls
|
220 |
+
with gr.Group(visible=True):
|
221 |
+
gr.Markdown("## Train New Model")
|
222 |
+
pdf_dir = gr.Textbox(label="PDF Directory", placeholder="Path to directory containing PDFs")
|
223 |
+
output_name = gr.Textbox(label="Model Name", placeholder="Name for your fine-tuned model", value="Shedify-v1")
|
224 |
+
train_btn = gr.Button("Start Training")
|
225 |
+
|
226 |
+
training_message = gr.Textbox(label="Training Status", interactive=False)
|
227 |
+
training_progress = gr.Slider(
|
228 |
+
minimum=0, maximum=1, value=0,
|
229 |
+
label="Progress", interactive=False
|
230 |
+
)
|
231 |
+
training_status = gr.Textbox(visible=False)
|
232 |
+
|
233 |
+
# Chat interface
|
234 |
+
chatbot = gr.ChatInterface(
|
235 |
+
fn=respond,
|
236 |
+
additional_inputs=[
|
237 |
+
gr.Textbox(
|
238 |
+
value="You are an AI assistant trained on specific documents. Answer questions based only on information from these documents. If you don't know the answer from the documents, say so clearly.",
|
239 |
+
label="System message"
|
240 |
+
),
|
241 |
+
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
|
242 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
243 |
+
gr.Slider(
|
244 |
+
minimum=0.1,
|
245 |
+
maximum=1.0,
|
246 |
+
value=0.9,
|
247 |
+
step=0.05,
|
248 |
+
label="Top-p (nucleus sampling)",
|
249 |
+
),
|
250 |
+
],
|
251 |
+
examples=[
|
252 |
+
["Summarize the key points from all documents you were trained on."],
|
253 |
+
["What are the main themes discussed in the documents?"],
|
254 |
+
["Extract the most important concepts mentioned in the documents."],
|
255 |
+
["Explain the relationship between the different topics in the documents."],
|
256 |
+
["What recommendations or conclusions can be drawn from the documents?"],
|
257 |
+
]
|
258 |
+
)
|
259 |
+
|
260 |
+
# Set up event handlers
|
261 |
+
train_btn.click(
|
262 |
+
fn=start_training,
|
263 |
+
inputs=[pdf_dir, output_name],
|
264 |
+
outputs=[training_message, training_progress, training_status]
|
265 |
+
)
|
266 |
+
|
267 |
+
# Setup periodic status checking
|
268 |
+
demo.load(get_training_status, outputs=[training_message, training_progress, training_status])
|
269 |
+
|
270 |
+
def update_ui(message, progress, status):
|
271 |
+
is_running = status == "running"
|
272 |
+
color = {
|
273 |
+
"idle": "gray",
|
274 |
+
"running": "blue",
|
275 |
+
"success": "green",
|
276 |
+
"failed": "red"
|
277 |
+
}.get(status, "gray")
|
278 |
+
|
279 |
+
message_with_color = f"<span style='color: {color}'>{message}</span>"
|
280 |
+
return message_with_color, progress, train_btn.update(interactive=not is_running)
|
281 |
+
|
282 |
+
training_status.change(
|
283 |
+
fn=update_ui,
|
284 |
+
inputs=[training_message, training_progress, training_status],
|
285 |
+
outputs=[training_message, training_progress, train_btn]
|
286 |
+
)
|
287 |
+
|
288 |
+
# Set interval to update the UI every few seconds
|
289 |
+
demo.add_event_handler("load", None, None, None, None, interval=5.0, inputs=None, outputs=[training_message, training_progress, training_status], _js=None, fn=get_training_status)
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,11 @@
|
|
1 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub>=0.25.2
|
2 |
+
gradio>=5.0.1
|
3 |
+
transformers>=4.36.0
|
4 |
+
peft>=0.7.0
|
5 |
+
datasets>=2.14.0
|
6 |
+
accelerate>=0.25.0
|
7 |
+
trl>=0.7.1
|
8 |
+
bitsandbytes>=0.40.0
|
9 |
+
torch>=2.0.0
|
10 |
+
PyPDF2>=3.0.0
|
11 |
+
tqdm>=4.65.0
|