Spaces:
Sleeping
Sleeping
import torch, gc, os, numpy as np, evaluate, json | |
from datasets import load_dataset | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForQuestionAnswering, | |
TrainingArguments, | |
Trainer, | |
default_data_collator | |
) | |
from peft import LoraConfig, get_peft_model, TaskType | |
from huggingface_hub import login | |
import sys | |
def main(): | |
# Get model name from environment | |
model_name = os.environ.get('MODEL_NAME', 'roberta-cuad-qa') | |
# Login to HF Hub | |
hf_token = os.environ.get('roberta_token') | |
if hf_token: | |
login(token=hf_token) | |
print("β Logged into Hugging Face Hub") | |
else: | |
print("β οΈ No HF_TOKEN found - model won't be pushed to Hub") | |
# Setup | |
torch.cuda.empty_cache() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"π§ Using device: {device}") | |
if torch.cuda.is_available(): | |
print(f"π― GPU: {torch.cuda.get_device_name()}") | |
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB") | |
# Load and prepare data - REDUCED SIZE FOR FASTER TRAINING | |
print("π Loading CUAD dataset...") | |
raw = load_dataset("theatticusproject/cuad-qa", split="train", trust_remote_code=True) | |
# Use 5000 samples for good model quality - expect ~1 hour training | |
N = 5000 | |
raw = raw.shuffle(seed=42).select(range(min(N, len(raw)))) | |
ds = raw.train_test_split(test_size=0.1, seed=42) | |
train_ds, val_ds = ds["train"], ds["test"] | |
print(f"β Data loaded - Train: {len(train_ds)}, Val: {len(val_ds)}") | |
# Store original validation data for metrics | |
print("π Preparing metrics data...") | |
original_val_data = [] | |
val_sample_mapping = [] # Track which tokenized sample maps to which original | |
for i, ex in enumerate(val_ds): | |
original_val_data.append(ex["answers"]) | |
# Load model and tokenizer | |
print("π€ Loading RoBERTa model...") | |
base_model = "roberta-base" | |
tok = AutoTokenizer.from_pretrained(base_model, use_fast=True) | |
model = AutoModelForQuestionAnswering.from_pretrained(base_model) | |
# Add LoRA | |
print("π§ Adding LoRA adapters...") | |
lora_cfg = LoraConfig( | |
task_type=TaskType.QUESTION_ANS, | |
target_modules=["query", "value"], | |
r=16, | |
lora_alpha=32, | |
lora_dropout=0.05, | |
) | |
model = get_peft_model(model, lora_cfg) | |
model.print_trainable_parameters() | |
model.to(device) | |
# Tokenization function - AGGRESSIVE OPTIMIZATION TO PREVENT EXPANSION | |
max_len, doc_stride = 512, 400 # Much larger stride to minimize chunks per document | |
def preprocess(examples): | |
tok_batch = tok( | |
examples["question"], | |
examples["context"], | |
truncation="only_second", | |
max_length=max_len, | |
stride=doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding="max_length", | |
) | |
sample_map = tok_batch.pop("overflow_to_sample_mapping") | |
offset_map = tok_batch.pop("offset_mapping") | |
start_pos, end_pos = [], [] | |
for i, offsets in enumerate(offset_map): | |
cls_idx = tok_batch["input_ids"][i].index(tok.cls_token_id) | |
sample_idx = sample_map[i] | |
answer = examples["answers"][sample_idx] | |
if len(answer["answer_start"]) == 0: | |
start_pos.append(cls_idx) | |
end_pos.append(cls_idx) | |
continue | |
s_char = answer["answer_start"][0] | |
e_char = s_char + len(answer["text"][0]) | |
seq_ids = tok_batch.sequence_ids(i) | |
c0, c1 = seq_ids.index(1), len(seq_ids) - 1 - seq_ids[::-1].index(1) | |
if not (offsets[c0][0] <= s_char <= offsets[c1][1]): | |
start_pos.append(cls_idx) | |
end_pos.append(cls_idx) | |
continue | |
st = c0 | |
while st <= c1 and offsets[st][0] <= s_char: | |
st += 1 | |
en = c1 | |
while en >= c0 and offsets[en][1] >= e_char: | |
en -= 1 | |
# Fixed position calculation with bounds checking | |
start_pos.append(max(c0, min(st - 1, c1))) | |
end_pos.append(max(c0, min(en + 1, c1))) | |
tok_batch["start_positions"] = start_pos | |
tok_batch["end_positions"] = end_pos | |
# Store sample mapping for metrics calculation | |
tok_batch["sample_mapping"] = sample_map | |
return tok_batch | |
# Tokenize datasets | |
print("π Tokenizing datasets...") | |
train_tok = train_ds.map( | |
preprocess, | |
batched=True, | |
batch_size=50, # Smaller batch size for preprocessing | |
remove_columns=train_ds.column_names, | |
desc="Tokenizing train" | |
) | |
val_tok = val_ds.map( | |
preprocess, | |
batched=True, | |
batch_size=50, | |
remove_columns=val_ds.column_names, | |
desc="Tokenizing validation" | |
) | |
# DEBUG: Print actual dataset sizes after tokenization | |
print(f"π DEBUG INFO:") | |
print(f" Original samples: {N}") | |
print(f" After tokenization - Train: {len(train_tok)}, Val: {len(val_tok)}") | |
print(f" Expansion factor: {len(train_tok)/len(train_ds):.1f}x") | |
# SAFETY CHECK: If expansion is too high, reduce data size automatically | |
expansion_factor = len(train_tok) / len(train_ds) | |
if expansion_factor > 12: # Slightly more permissive for 4K samples | |
print(f"β οΈ HIGH EXPANSION DETECTED ({expansion_factor:.1f}x)!") | |
print("π§ Auto-reducing dataset size to prevent excessively slow training...") | |
# Allow up to 20k samples for 1 hour training | |
target_size = min(20000, len(train_tok)) # Max 20k samples | |
train_indices = list(range(0, len(train_tok), max(1, len(train_tok) // target_size)))[:target_size] | |
val_indices = list(range(0, len(val_tok), max(1, len(val_tok) // (target_size // 10))))[:target_size // 10] | |
train_tok = train_tok.select(train_indices) | |
val_tok = val_tok.select(val_indices) | |
print(f"β Reduced to - Train: {len(train_tok)}, Val: {len(val_tok)}") | |
print(f"π This should complete in ~45-75 minutes") | |
# Clean up memory | |
del raw, ds, train_ds, val_ds | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Metrics setup | |
metric = evaluate.load("squad") | |
def postprocess(preds, dataset): | |
starts, ends = preds | |
answers = [] | |
for i in range(len(starts)): | |
a, b = int(np.argmax(starts[i])), int(np.argmax(ends[i])) | |
if a > b: | |
a, b = b, a | |
text = tok.decode(dataset[i]["input_ids"][a:b+1], skip_special_tokens=True) | |
answers.append(text.strip()) | |
return answers | |
def compute_metrics(eval_pred): | |
try: | |
preds, _ = eval_pred | |
starts, ends = preds | |
# Group predictions by original sample (handle multiple chunks per sample) | |
sample_predictions = {} | |
for i in range(len(starts)): | |
# Get which original sample this tokenized example came from | |
if hasattr(val_tok[i], 'sample_mapping') and 'sample_mapping' in val_tok[i]: | |
orig_idx = val_tok[i]['sample_mapping'] | |
else: | |
# Fallback: assume 1:1 mapping (may be inaccurate with chunking) | |
orig_idx = min(i, len(original_val_data) - 1) | |
# Get best answer span for this chunk | |
start_idx = int(np.argmax(starts[i])) | |
end_idx = int(np.argmax(ends[i])) | |
if start_idx > end_idx: | |
start_idx, end_idx = end_idx, start_idx | |
# Extract answer text | |
answer_text = tok.decode( | |
val_tok[i]["input_ids"][start_idx:end_idx+1], | |
skip_special_tokens=True | |
).strip() | |
# Store best prediction for this original sample | |
confidence = float(starts[i][start_idx]) + float(ends[i][end_idx]) | |
if orig_idx not in sample_predictions or confidence > sample_predictions[orig_idx][1]: | |
sample_predictions[orig_idx] = (answer_text, confidence) | |
# Format for SQuAD metric | |
predictions = [] | |
references = [] | |
for orig_idx in range(len(original_val_data)): | |
pred_text = sample_predictions.get(orig_idx, ("", 0))[0] | |
predictions.append({ | |
"id": str(orig_idx), | |
"prediction_text": pred_text | |
}) | |
references.append({ | |
"id": str(orig_idx), | |
"answers": original_val_data[orig_idx] | |
}) | |
result = metric.compute(predictions=predictions, references=references) | |
# Add some debugging info | |
print(f"π Evaluation: EM={result['exact_match']:.3f}, F1={result['f1']:.3f}") | |
return result | |
except Exception as e: | |
print(f"β οΈ Metrics computation failed: {e}") | |
print(f" Pred shape: {np.array(preds).shape if preds else 'None'}") | |
print(f" Val dataset size: {len(val_tok)}") | |
print(f" Original val size: {len(original_val_data)}") | |
return {"exact_match": 0.0, "f1": 0.0} | |
# OPTIMIZED Training arguments | |
output_dir = "./model_output" | |
args = TrainingArguments( | |
output_dir=output_dir, | |
per_device_train_batch_size=8, # INCREASED from 2 | |
per_device_eval_batch_size=8, # INCREASED from 4 | |
gradient_accumulation_steps=2, # REDUCED from 8 | |
num_train_epochs=3, # Back to 3 epochs for better training | |
learning_rate=5e-4, | |
lr_scheduler_type="cosine", | |
warmup_ratio=0.1, | |
bf16=True, # CHANGED from fp16 (better for newer GPUs) | |
eval_strategy="steps", | |
eval_steps=100, # REDUCED from 250 | |
save_steps=200, # REDUCED from 500 | |
save_total_limit=2, | |
logging_steps=25, # REDUCED from 50 | |
weight_decay=0.01, | |
remove_unused_columns=True, | |
report_to=None, | |
push_to_hub=False, | |
dataloader_pin_memory=True, # CHANGED to True for faster data loading | |
dataloader_num_workers=4, # ADDED for parallel data loading | |
gradient_checkpointing=False, # DISABLED to trade memory for speed | |
) | |
# Create trainer | |
trainer = Trainer( | |
model=model, | |
args=args, | |
train_dataset=train_tok, | |
eval_dataset=val_tok, | |
tokenizer=tok, | |
data_collator=default_data_collator, | |
compute_metrics=compute_metrics, | |
) | |
print(f"π Starting training...") | |
print(f"π Total training samples: {len(train_tok)}") | |
print(f"π Total validation samples: {len(val_tok)}") | |
print(f"β‘ Effective batch size: {args.per_device_train_batch_size * args.gradient_accumulation_steps}") | |
if torch.cuda.is_available(): | |
print(f"πΎ GPU memory before training: {torch.cuda.memory_allocated()/1024**3:.2f} GB") | |
# Training loop with error handling | |
try: | |
trainer.train() | |
print("β Training completed successfully!") | |
except RuntimeError as e: | |
if "CUDA out of memory" in str(e): | |
print("β οΈ GPU OOM - reducing batch size and retrying...") | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Reduce batch size | |
args.per_device_train_batch_size = 4 | |
args.gradient_accumulation_steps = 4 | |
trainer = Trainer( | |
model=model, | |
args=args, | |
train_dataset=train_tok, | |
eval_dataset=val_tok, | |
tokenizer=tok, | |
data_collator=default_data_collator, | |
compute_metrics=compute_metrics, | |
) | |
trainer.train() | |
print("β Training completed with reduced batch size!") | |
else: | |
raise e | |
# Save model locally first | |
print("πΎ Saving model locally...") | |
os.makedirs(output_dir, exist_ok=True) | |
trainer.model.save_pretrained(output_dir) | |
tok.save_pretrained(output_dir) | |
# Save training info | |
training_info = { | |
"model_name": model_name, | |
"base_model": base_model, | |
"dataset": "theatticusproject/cuad-qa", | |
"original_samples": N, | |
"training_samples_after_tokenization": len(train_tok), | |
"validation_samples_after_tokenization": len(val_tok), | |
"lora_config": { | |
"r": lora_cfg.r, | |
"lora_alpha": lora_cfg.lora_alpha, | |
"target_modules": lora_cfg.target_modules, | |
"lora_dropout": lora_cfg.lora_dropout, | |
}, | |
"training_args": { | |
"batch_size": args.per_device_train_batch_size, | |
"gradient_accumulation_steps": args.gradient_accumulation_steps, | |
"effective_batch_size": args.per_device_train_batch_size * args.gradient_accumulation_steps, | |
"epochs": args.num_train_epochs, | |
"learning_rate": args.learning_rate, | |
} | |
} | |
with open(os.path.join(output_dir, "training_info.json"), "w") as f: | |
json.dump(training_info, f, indent=2) | |
# Push to Hub if token available | |
if hf_token: | |
try: | |
print(f"β¬οΈ Pushing model to Hub: {model_name}") | |
trainer.model.push_to_hub(model_name, private=False) | |
tok.push_to_hub(model_name, private=False) | |
# Also push training info | |
from huggingface_hub import upload_file | |
upload_file( | |
path_or_fileobj=os.path.join(output_dir, "training_info.json"), | |
path_in_repo="training_info.json", | |
repo_id=model_name, | |
repo_type="model" | |
) | |
print(f"π Model successfully saved to: https://huggingface.co/{model_name}") | |
except Exception as e: | |
print(f"β Failed to push to Hub: {e}") | |
print("πΎ Model saved locally in ./model_output/") | |
else: | |
print("πΎ Model saved locally in ./model_output/ (no HF token for Hub upload)") | |
print("π Training pipeline completed!") | |
if __name__ == "__main__": | |
main() |