File size: 14,713 Bytes
29ee80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import torch, gc, os, numpy as np, evaluate, json
from datasets import load_dataset
from transformers import (
    AutoTokenizer,
    AutoModelForQuestionAnswering,
    TrainingArguments,
    Trainer,
    default_data_collator
)
from peft import LoraConfig, get_peft_model, TaskType
from huggingface_hub import login
import sys

def main():
    # Get model name from environment
    model_name = os.environ.get('MODEL_NAME', 'roberta-cuad-qa')
    
    # Login to HF Hub
    hf_token = os.environ.get('roberta_token')
    if hf_token:
        login(token=hf_token)
        print("βœ… Logged into Hugging Face Hub")
    else:
        print("⚠️ No HF_TOKEN found - model won't be pushed to Hub")
    
    # Setup
    torch.cuda.empty_cache()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"πŸ”§ Using device: {device}")
    if torch.cuda.is_available():
        print(f"🎯 GPU: {torch.cuda.get_device_name()}")
        print(f"πŸ’Ύ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
    
    # Load and prepare data - REDUCED SIZE FOR FASTER TRAINING
    print("πŸ“š Loading CUAD dataset...")
    raw = load_dataset("theatticusproject/cuad-qa", split="train", trust_remote_code=True)
    
    # Use 5000 samples for good model quality - expect ~1 hour training
    N = 5000  
    raw = raw.shuffle(seed=42).select(range(min(N, len(raw))))
    ds = raw.train_test_split(test_size=0.1, seed=42)
    train_ds, val_ds = ds["train"], ds["test"]
    print(f"βœ… Data loaded - Train: {len(train_ds)}, Val: {len(val_ds)}")
    
    # Store original validation data for metrics 
    print("πŸ“Š Preparing metrics data...")
    original_val_data = []
    val_sample_mapping = []  # Track which tokenized sample maps to which original
    
    for i, ex in enumerate(val_ds):
        original_val_data.append(ex["answers"])
    
    # Load model and tokenizer
    print("πŸ€– Loading RoBERTa model...")
    base_model = "roberta-base"
    tok = AutoTokenizer.from_pretrained(base_model, use_fast=True)
    model = AutoModelForQuestionAnswering.from_pretrained(base_model)
    
    # Add LoRA
    print("πŸ”§ Adding LoRA adapters...")
    lora_cfg = LoraConfig(
        task_type=TaskType.QUESTION_ANS,
        target_modules=["query", "value"],
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
    )
    model = get_peft_model(model, lora_cfg)
    model.print_trainable_parameters()
    model.to(device)
    
    # Tokenization function - AGGRESSIVE OPTIMIZATION TO PREVENT EXPANSION
    max_len, doc_stride = 512, 400  # Much larger stride to minimize chunks per document
    
    def preprocess(examples):
        tok_batch = tok(
            examples["question"],
            examples["context"],
            truncation="only_second",
            max_length=max_len,
            stride=doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length",
        )
        
        sample_map = tok_batch.pop("overflow_to_sample_mapping")
        offset_map = tok_batch.pop("offset_mapping")
        
        start_pos, end_pos = [], []
        for i, offsets in enumerate(offset_map):
            cls_idx = tok_batch["input_ids"][i].index(tok.cls_token_id)
            sample_idx = sample_map[i]
            answer = examples["answers"][sample_idx]
            
            if len(answer["answer_start"]) == 0:
                start_pos.append(cls_idx)
                end_pos.append(cls_idx)
                continue
            
            s_char = answer["answer_start"][0]
            e_char = s_char + len(answer["text"][0])
            seq_ids = tok_batch.sequence_ids(i)
            c0, c1 = seq_ids.index(1), len(seq_ids) - 1 - seq_ids[::-1].index(1)
            
            if not (offsets[c0][0] <= s_char <= offsets[c1][1]):
                start_pos.append(cls_idx)
                end_pos.append(cls_idx)
                continue
            
            st = c0
            while st <= c1 and offsets[st][0] <= s_char:
                st += 1
            
            en = c1
            while en >= c0 and offsets[en][1] >= e_char:
                en -= 1
            
            # Fixed position calculation with bounds checking
            start_pos.append(max(c0, min(st - 1, c1)))
            end_pos.append(max(c0, min(en + 1, c1)))
        
        tok_batch["start_positions"] = start_pos
        tok_batch["end_positions"] = end_pos
        
        # Store sample mapping for metrics calculation
        tok_batch["sample_mapping"] = sample_map
        return tok_batch
    
    # Tokenize datasets
    print("πŸ”„ Tokenizing datasets...")
    train_tok = train_ds.map(
        preprocess,
        batched=True,
        batch_size=50,  # Smaller batch size for preprocessing
        remove_columns=train_ds.column_names,
        desc="Tokenizing train"
    )
    
    val_tok = val_ds.map(
        preprocess,
        batched=True,
        batch_size=50,
        remove_columns=val_ds.column_names,
        desc="Tokenizing validation"
    )
    
    # DEBUG: Print actual dataset sizes after tokenization
    print(f"πŸ” DEBUG INFO:")
    print(f"  Original samples: {N}")
    print(f"  After tokenization - Train: {len(train_tok)}, Val: {len(val_tok)}")
    print(f"  Expansion factor: {len(train_tok)/len(train_ds):.1f}x")
    
    # SAFETY CHECK: If expansion is too high, reduce data size automatically
    expansion_factor = len(train_tok) / len(train_ds)
    if expansion_factor > 12:  # Slightly more permissive for 4K samples
        print(f"⚠️ HIGH EXPANSION DETECTED ({expansion_factor:.1f}x)!")
        print("πŸ”§ Auto-reducing dataset size to prevent excessively slow training...")
        
        # Allow up to 20k samples for 1 hour training
        target_size = min(20000, len(train_tok))  # Max 20k samples
        train_indices = list(range(0, len(train_tok), max(1, len(train_tok) // target_size)))[:target_size]
        val_indices = list(range(0, len(val_tok), max(1, len(val_tok) // (target_size // 10))))[:target_size // 10]
        
        train_tok = train_tok.select(train_indices)
        val_tok = val_tok.select(val_indices)
        
        print(f"βœ… Reduced to - Train: {len(train_tok)}, Val: {len(val_tok)}")
        print(f"πŸ“ˆ This should complete in ~45-75 minutes")
    
    # Clean up memory
    del raw, ds, train_ds, val_ds
    gc.collect()
    torch.cuda.empty_cache()
    
    # Metrics setup
    metric = evaluate.load("squad")
    
    def postprocess(preds, dataset):
        starts, ends = preds
        answers = []
        for i in range(len(starts)):
            a, b = int(np.argmax(starts[i])), int(np.argmax(ends[i]))
            if a > b:
                a, b = b, a
            text = tok.decode(dataset[i]["input_ids"][a:b+1], skip_special_tokens=True)
            answers.append(text.strip())
        return answers
    
    def compute_metrics(eval_pred):
        try:
            preds, _ = eval_pred
            starts, ends = preds
            
            # Group predictions by original sample (handle multiple chunks per sample)
            sample_predictions = {}
            for i in range(len(starts)):
                # Get which original sample this tokenized example came from
                if hasattr(val_tok[i], 'sample_mapping') and 'sample_mapping' in val_tok[i]:
                    orig_idx = val_tok[i]['sample_mapping']
                else:
                    # Fallback: assume 1:1 mapping (may be inaccurate with chunking)
                    orig_idx = min(i, len(original_val_data) - 1)
                
                # Get best answer span for this chunk
                start_idx = int(np.argmax(starts[i]))
                end_idx = int(np.argmax(ends[i]))
                if start_idx > end_idx:
                    start_idx, end_idx = end_idx, start_idx
                
                # Extract answer text
                answer_text = tok.decode(
                    val_tok[i]["input_ids"][start_idx:end_idx+1],
                    skip_special_tokens=True
                ).strip()
                
                # Store best prediction for this original sample
                confidence = float(starts[i][start_idx]) + float(ends[i][end_idx])
                if orig_idx not in sample_predictions or confidence > sample_predictions[orig_idx][1]:
                    sample_predictions[orig_idx] = (answer_text, confidence)
            
            # Format for SQuAD metric
            predictions = []
            references = []
            for orig_idx in range(len(original_val_data)):
                pred_text = sample_predictions.get(orig_idx, ("", 0))[0]
                predictions.append({
                    "id": str(orig_idx),
                    "prediction_text": pred_text
                })
                references.append({
                    "id": str(orig_idx),
                    "answers": original_val_data[orig_idx]
                })
            
            result = metric.compute(predictions=predictions, references=references)
            
            # Add some debugging info
            print(f"πŸ“Š Evaluation: EM={result['exact_match']:.3f}, F1={result['f1']:.3f}")
            return result
            
        except Exception as e:
            print(f"⚠️ Metrics computation failed: {e}")
            print(f"  Pred shape: {np.array(preds).shape if preds else 'None'}")
            print(f"  Val dataset size: {len(val_tok)}")
            print(f"  Original val size: {len(original_val_data)}")
            return {"exact_match": 0.0, "f1": 0.0}
    
    # OPTIMIZED Training arguments
    output_dir = "./model_output"
    args = TrainingArguments(
        output_dir=output_dir,
        per_device_train_batch_size=8,  # INCREASED from 2
        per_device_eval_batch_size=8,   # INCREASED from 4
        gradient_accumulation_steps=2,  # REDUCED from 8
        num_train_epochs=3,             # Back to 3 epochs for better training
        learning_rate=5e-4,
        lr_scheduler_type="cosine",
        warmup_ratio=0.1,
        bf16=True,                      # CHANGED from fp16 (better for newer GPUs)
        eval_strategy="steps",
        eval_steps=100,                 # REDUCED from 250
        save_steps=200,                 # REDUCED from 500
        save_total_limit=2,
        logging_steps=25,               # REDUCED from 50
        weight_decay=0.01,
        remove_unused_columns=True,
        report_to=None,
        push_to_hub=False,
        dataloader_pin_memory=True,     # CHANGED to True for faster data loading
        dataloader_num_workers=4,       # ADDED for parallel data loading
        gradient_checkpointing=False,   # DISABLED to trade memory for speed
    )
    
    # Create trainer
    trainer = Trainer(
        model=model,
        args=args,
        train_dataset=train_tok,
        eval_dataset=val_tok,
        tokenizer=tok,
        data_collator=default_data_collator,
        compute_metrics=compute_metrics,
    )
    
    print(f"πŸš€ Starting training...")
    print(f"πŸ“Š Total training samples: {len(train_tok)}")
    print(f"πŸ“Š Total validation samples: {len(val_tok)}")
    print(f"⚑ Effective batch size: {args.per_device_train_batch_size * args.gradient_accumulation_steps}")
    
    if torch.cuda.is_available():
        print(f"πŸ’Ύ GPU memory before training: {torch.cuda.memory_allocated()/1024**3:.2f} GB")
    
    # Training loop with error handling
    try:
        trainer.train()
        print("βœ… Training completed successfully!")
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            print("⚠️ GPU OOM - reducing batch size and retrying...")
            torch.cuda.empty_cache()
            gc.collect()
            
            # Reduce batch size
            args.per_device_train_batch_size = 4
            args.gradient_accumulation_steps = 4
            trainer = Trainer(
                model=model,
                args=args,
                train_dataset=train_tok,
                eval_dataset=val_tok,
                tokenizer=tok,
                data_collator=default_data_collator,
                compute_metrics=compute_metrics,
            )
            trainer.train()
            print("βœ… Training completed with reduced batch size!")
        else:
            raise e
    
    # Save model locally first
    print("πŸ’Ύ Saving model locally...")
    os.makedirs(output_dir, exist_ok=True)
    trainer.model.save_pretrained(output_dir)
    tok.save_pretrained(output_dir)
    
    # Save training info
    training_info = {
        "model_name": model_name,
        "base_model": base_model,
        "dataset": "theatticusproject/cuad-qa",
        "original_samples": N,
        "training_samples_after_tokenization": len(train_tok),
        "validation_samples_after_tokenization": len(val_tok),
        "lora_config": {
            "r": lora_cfg.r,
            "lora_alpha": lora_cfg.lora_alpha,
            "target_modules": lora_cfg.target_modules,
            "lora_dropout": lora_cfg.lora_dropout,
        },
        "training_args": {
            "batch_size": args.per_device_train_batch_size,
            "gradient_accumulation_steps": args.gradient_accumulation_steps,
            "effective_batch_size": args.per_device_train_batch_size * args.gradient_accumulation_steps,
            "epochs": args.num_train_epochs,
            "learning_rate": args.learning_rate,
        }
    }
    
    with open(os.path.join(output_dir, "training_info.json"), "w") as f:
        json.dump(training_info, f, indent=2)
    
    # Push to Hub if token available
    if hf_token:
        try:
            print(f"⬆️ Pushing model to Hub: {model_name}")
            trainer.model.push_to_hub(model_name, private=False)
            tok.push_to_hub(model_name, private=False)
            
            # Also push training info
            from huggingface_hub import upload_file
            upload_file(
                path_or_fileobj=os.path.join(output_dir, "training_info.json"),
                path_in_repo="training_info.json",
                repo_id=model_name,
                repo_type="model"
            )
            
            print(f"πŸŽ‰ Model successfully saved to: https://huggingface.co/{model_name}")
        except Exception as e:
            print(f"❌ Failed to push to Hub: {e}")
            print("πŸ’Ύ Model saved locally in ./model_output/")
    else:
        print("πŸ’Ύ Model saved locally in ./model_output/ (no HF token for Hub upload)")
    
    print("🏁 Training pipeline completed!")

if __name__ == "__main__":
    main()