Delete Kopie_von_⚡_AutoQuant.ipynb
Browse files- Kopie_von_⚡_AutoQuant.ipynb +0 -355
Kopie_von_⚡_AutoQuant.ipynb
DELETED
|
@@ -1,355 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {
|
| 7 |
-
"cellView": "form",
|
| 8 |
-
"id": "fD24jJxq7t3k"
|
| 9 |
-
},
|
| 10 |
-
"outputs": [],
|
| 11 |
-
"source": [
|
| 12 |
-
"# @title # ⚡ AutoQuant\n",
|
| 13 |
-
"\n",
|
| 14 |
-
"# @markdown > 🗣️ [Large Language Model Course](https://github.com/mlabonne/llm-course)\n",
|
| 15 |
-
"\n",
|
| 16 |
-
"# @markdown ❤️ Created by [@maximelabonne](https://twitter.com/maximelabonne).\n",
|
| 17 |
-
"\n",
|
| 18 |
-
"# @markdown **Usage:** Download the model by **running this cell** and then run the cells corresponding to your quantization methods of interest.\n",
|
| 19 |
-
"\n",
|
| 20 |
-
"# @markdown To quantize a 7B model, GGUF only needs a T4 GPU, while the other methods require an A100 GPU.\n",
|
| 21 |
-
"\n",
|
| 22 |
-
"# @markdown *See also the [AutoQuantize](https://colab.research.google.com/drive/1Li3USnl3yoYctqJLtYux3LAIy4Bnnv3J) notebook from zainulabideen.*\n",
|
| 23 |
-
"\n",
|
| 24 |
-
"# @markdown ---\n",
|
| 25 |
-
"\n",
|
| 26 |
-
"# @markdown ## 🤗 Download model (required)\n",
|
| 27 |
-
"# @markdown `HF_TOKEN` corresponds to the name of the secret that stores your [Hugging Face access token](https://huggingface.co/settings/tokens) in Colab.\n",
|
| 28 |
-
"\n",
|
| 29 |
-
"MODEL_ID = \"mlabonne/Zebrafish-7B\" # @param {type:\"string\"}\n",
|
| 30 |
-
"USERNAME = \"Artples\" # @param {type:\"string\"}\n",
|
| 31 |
-
"HF_TOKEN = \"HF_TOKEN\" # @param {type:\"string\"}\n",
|
| 32 |
-
"\n",
|
| 33 |
-
"MODEL_NAME = MODEL_ID.split('/')[-1]\n",
|
| 34 |
-
"\n",
|
| 35 |
-
"# Download model\n",
|
| 36 |
-
"!git lfs install\n",
|
| 37 |
-
"!git clone https://huggingface.co/{MODEL_ID}\n",
|
| 38 |
-
"!pip install -q huggingface_hub\n",
|
| 39 |
-
"\n",
|
| 40 |
-
"from huggingface_hub import create_repo, HfApi, ModelCard\n",
|
| 41 |
-
"from google.colab import userdata, runtime\n",
|
| 42 |
-
"\n",
|
| 43 |
-
"# Defined in the secrets tab in Google Colab\n",
|
| 44 |
-
"hf_token = userdata.get(HF_TOKEN)\n",
|
| 45 |
-
"api = HfApi()"
|
| 46 |
-
]
|
| 47 |
-
},
|
| 48 |
-
{
|
| 49 |
-
"cell_type": "code",
|
| 50 |
-
"execution_count": null,
|
| 51 |
-
"metadata": {
|
| 52 |
-
"id": "NL0yGhbe3EFk"
|
| 53 |
-
},
|
| 54 |
-
"outputs": [],
|
| 55 |
-
"source": [
|
| 56 |
-
"# @title ## 🧩 GGUF\n",
|
| 57 |
-
"\n",
|
| 58 |
-
"# @markdown Quantization methods: `q2_k`, `q3_k_l`, `q3_k_m`, `q3_k_s`, `q4_0`, `q4_1`, `q4_k_m`, `q4_k_s`, `q5_0`, `q5_1`, `q5_k_m`, `q5_k_s`, `q6_k`, `q8_0`\n",
|
| 59 |
-
"\n",
|
| 60 |
-
"# @markdown Learn more about GGUF and quantization methods in [this article](https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html).\n",
|
| 61 |
-
"\n",
|
| 62 |
-
"QUANTIZATION_FORMAT = \"q5_k_m\" # @param {type:\"string\"}\n",
|
| 63 |
-
"QUANTIZATION_METHODS = QUANTIZATION_FORMAT.replace(\" \", \"\").split(\",\")\n",
|
| 64 |
-
"\n",
|
| 65 |
-
"# Install llama.cpp\n",
|
| 66 |
-
"!git clone https://github.com/ggerganov/llama.cpp\n",
|
| 67 |
-
"!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make\n",
|
| 68 |
-
"!pip install -r llama.cpp/requirements.txt\n",
|
| 69 |
-
"\n",
|
| 70 |
-
"# Convert to fp16\n",
|
| 71 |
-
"fp16 = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin\"\n",
|
| 72 |
-
"!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}\n",
|
| 73 |
-
"\n",
|
| 74 |
-
"# Quantize the model for each method in the QUANTIZATION_METHODS list\n",
|
| 75 |
-
"for method in QUANTIZATION_METHODS:\n",
|
| 76 |
-
" qtype = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf\"\n",
|
| 77 |
-
" !./llama.cpp/quantize {fp16} {qtype} {method}\n",
|
| 78 |
-
"\n",
|
| 79 |
-
"# Create model card\n",
|
| 80 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
| 81 |
-
"card.data.tags.append(\"autoquant\")\n",
|
| 82 |
-
"card.data.tags.append(\"gguf\")\n",
|
| 83 |
-
"card.save(f'{MODEL_NAME}/README.md')\n",
|
| 84 |
-
"\n",
|
| 85 |
-
"# Upload model\n",
|
| 86 |
-
"create_repo(\n",
|
| 87 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-GGUF\",\n",
|
| 88 |
-
" repo_type=\"model\",\n",
|
| 89 |
-
" exist_ok=True,\n",
|
| 90 |
-
" token=hf_token\n",
|
| 91 |
-
")\n",
|
| 92 |
-
"api.upload_folder(\n",
|
| 93 |
-
" folder_path=MODEL_NAME,\n",
|
| 94 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-GGUF\",\n",
|
| 95 |
-
" allow_patterns=[\"*.gguf\",\"$.md\"],\n",
|
| 96 |
-
" token=hf_token\n",
|
| 97 |
-
")"
|
| 98 |
-
]
|
| 99 |
-
},
|
| 100 |
-
{
|
| 101 |
-
"cell_type": "code",
|
| 102 |
-
"execution_count": null,
|
| 103 |
-
"metadata": {
|
| 104 |
-
"cellView": "form",
|
| 105 |
-
"id": "OE_R3AXG5Y-F"
|
| 106 |
-
},
|
| 107 |
-
"outputs": [],
|
| 108 |
-
"source": [
|
| 109 |
-
"# @title ## 🧠 GPTQ\n",
|
| 110 |
-
"\n",
|
| 111 |
-
"# @markdown Learn more about the GPTQ algorithm in [this article](https://mlabonne.github.io/blog/posts/4_bit_Quantization_with_GPTQ.html).\n",
|
| 112 |
-
"\n",
|
| 113 |
-
"# !pip install auto-gptq optimum accelerate\n",
|
| 114 |
-
"\n",
|
| 115 |
-
"# from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig\n",
|
| 116 |
-
"\n",
|
| 117 |
-
"# BITS = 4 # @param {type:\"integer\"}\n",
|
| 118 |
-
"# GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
|
| 119 |
-
"# DAMP_PERCENT = 0.1 # @param {type:\"number\"}\n",
|
| 120 |
-
"\n",
|
| 121 |
-
"# # Quantize model\n",
|
| 122 |
-
"# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)\n",
|
| 123 |
-
"# quantization_config = GPTQConfig(bits=BITS, dataset=\"c4\", tokenizer=tokenizer, damp_percent=DAMP_PERCENT)\n",
|
| 124 |
-
"# model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map=\"auto\", quantization_config=quantization_config, low_cpu_mem_usage=True)\n",
|
| 125 |
-
"\n",
|
| 126 |
-
"# Save model and tokenizer\n",
|
| 127 |
-
"save_folder = MODEL_ID + \"-GPTQ\"\n",
|
| 128 |
-
"model.save_pretrained(save_folder, use_safetensors=True)\n",
|
| 129 |
-
"tokenizer.save_pretrained(save_folder)\n",
|
| 130 |
-
"\n",
|
| 131 |
-
"# Create model card\n",
|
| 132 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
| 133 |
-
"card.data.tags.append(\"autoquant\")\n",
|
| 134 |
-
"card.data.tags.append(\"gptq\")\n",
|
| 135 |
-
"card.save(f'{save_folder}/README.md')\n",
|
| 136 |
-
"\n",
|
| 137 |
-
"# Upload model\n",
|
| 138 |
-
"create_repo(\n",
|
| 139 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-GPTQ\",\n",
|
| 140 |
-
" repo_type=\"model\",\n",
|
| 141 |
-
" exist_ok=True,\n",
|
| 142 |
-
" token=hf_token\n",
|
| 143 |
-
")\n",
|
| 144 |
-
"api.upload_folder(\n",
|
| 145 |
-
" folder_path=save_folder,\n",
|
| 146 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-GPTQ\",\n",
|
| 147 |
-
" token=hf_token\n",
|
| 148 |
-
")"
|
| 149 |
-
]
|
| 150 |
-
},
|
| 151 |
-
{
|
| 152 |
-
"cell_type": "code",
|
| 153 |
-
"execution_count": null,
|
| 154 |
-
"metadata": {
|
| 155 |
-
"cellView": "form",
|
| 156 |
-
"id": "ZC9Nsr9u5WhN"
|
| 157 |
-
},
|
| 158 |
-
"outputs": [],
|
| 159 |
-
"source": [
|
| 160 |
-
"# @title # 🦙 ExLlamaV2\n",
|
| 161 |
-
"\n",
|
| 162 |
-
"# @markdown Learn more about ExLlamaV2 in [this article](https://mlabonne.github.io/blog/posts/ExLlamaV2_The_Fastest_Library_to_Run%C2%A0LLMs.html).\n",
|
| 163 |
-
"\n",
|
| 164 |
-
"BPW = 5.0 # @param {type:\"number\"}\n",
|
| 165 |
-
"\n",
|
| 166 |
-
"# Install ExLLamaV2\n",
|
| 167 |
-
"!git clone https://github.com/turboderp/exllamav2\n",
|
| 168 |
-
"!pip install -e exllamav2\n",
|
| 169 |
-
"!cp {MODEL_NAME} base_model\n",
|
| 170 |
-
"!rm base_mode/*.bin\n",
|
| 171 |
-
"\n",
|
| 172 |
-
"# Download dataset\n",
|
| 173 |
-
"!wget https://huggingface.co/datasets/wikitext/resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/wikitext-test.parquet\n",
|
| 174 |
-
"\n",
|
| 175 |
-
"# Quantize model\n",
|
| 176 |
-
"save_folder = MODEL_ID + \"-EXL2\"\n",
|
| 177 |
-
"!mkdir {save_folder}\n",
|
| 178 |
-
"!python exllamav2/convert.py \\\n",
|
| 179 |
-
" -i base_model \\\n",
|
| 180 |
-
" -o {save_folder} \\\n",
|
| 181 |
-
" -c wikitext-test.parquet \\\n",
|
| 182 |
-
" -b {BPW}\n",
|
| 183 |
-
"\n",
|
| 184 |
-
"# Copy files\n",
|
| 185 |
-
"!rm -rf quant/out_tensor\n",
|
| 186 |
-
"!rsync -av --exclude='*.safetensors' --exclude='.*' ./base_model/ ./{save_folder}/\n",
|
| 187 |
-
"\n",
|
| 188 |
-
"# Create model card\n",
|
| 189 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
| 190 |
-
"card.data.tags.append(\"autoquant\")\n",
|
| 191 |
-
"card.data.tags.append(\"exl2\")\n",
|
| 192 |
-
"card.save(f'{save_folder}/README.md')\n",
|
| 193 |
-
"\n",
|
| 194 |
-
"# Upload model\n",
|
| 195 |
-
"create_repo(\n",
|
| 196 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
|
| 197 |
-
" repo_type=\"model\",\n",
|
| 198 |
-
" exist_ok=True,\n",
|
| 199 |
-
" token=hf_token\n",
|
| 200 |
-
")\n",
|
| 201 |
-
"api.upload_folder(\n",
|
| 202 |
-
" folder_path=save_folder,\n",
|
| 203 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
|
| 204 |
-
" token=hf_token\n",
|
| 205 |
-
")"
|
| 206 |
-
]
|
| 207 |
-
},
|
| 208 |
-
{
|
| 209 |
-
"cell_type": "code",
|
| 210 |
-
"execution_count": null,
|
| 211 |
-
"metadata": {
|
| 212 |
-
"cellView": "form",
|
| 213 |
-
"id": "MyyUO2Fj3WHt"
|
| 214 |
-
},
|
| 215 |
-
"outputs": [],
|
| 216 |
-
"source": [
|
| 217 |
-
"# @title ## ⚖️ AWQ\n",
|
| 218 |
-
"\n",
|
| 219 |
-
"# @markdown See the [AutoAWQ repository](https://github.com/casper-hansen/AutoAWQ) for more information.\n",
|
| 220 |
-
"\n",
|
| 221 |
-
"# Install AutoAWQ\n",
|
| 222 |
-
"!pip install -qqq -U https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl\n",
|
| 223 |
-
"!pip install zstandard\n",
|
| 224 |
-
"\n",
|
| 225 |
-
"from awq import AutoAWQForCausalLM\n",
|
| 226 |
-
"from transformers import AutoTokenizer\n",
|
| 227 |
-
"\n",
|
| 228 |
-
"BITS = 4 # @param {type: \"integer\"}\n",
|
| 229 |
-
"GROUP_SIZE = 128 # @param {type: \"integer\"}\n",
|
| 230 |
-
"VERSION = \"GEMM\" # @param {type: \"string\"}\n",
|
| 231 |
-
"ZERO_POINT = True # @param {type: \"boolean\"}\n",
|
| 232 |
-
"\n",
|
| 233 |
-
"quant_config = {\n",
|
| 234 |
-
" \"w_bit\": BITS,\n",
|
| 235 |
-
" \"q_group_size\": GROUP_SIZE,\n",
|
| 236 |
-
" \"version\": VERSION,\n",
|
| 237 |
-
" \"zero_point\": ZERO_POINT\n",
|
| 238 |
-
"}\n",
|
| 239 |
-
"save_folder = MODEL_NAME + \"-AWQ\"\n",
|
| 240 |
-
"\n",
|
| 241 |
-
"# Quantize model\n",
|
| 242 |
-
"model = AutoAWQForCausalLM.from_pretrained(MODEL_NAME, safetensors=True, low_cpu_mem_usage=True)\n",
|
| 243 |
-
"tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)\n",
|
| 244 |
-
"model.quantize(tokenizer, quant_config=quant_config)\n",
|
| 245 |
-
"\n",
|
| 246 |
-
"# Save model and tokenizer\n",
|
| 247 |
-
"model.save_quantized(save_folder)\n",
|
| 248 |
-
"tokenizer.save_pretrained(save_folder)\n",
|
| 249 |
-
"\n",
|
| 250 |
-
"# Create model card\n",
|
| 251 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
| 252 |
-
"card.data.tags.append(\"autoquant\")\n",
|
| 253 |
-
"card.data.tags.append(\"awq\")\n",
|
| 254 |
-
"card.save(f'{save_folder}/README.md')\n",
|
| 255 |
-
"\n",
|
| 256 |
-
"# Upload model\n",
|
| 257 |
-
"create_repo(\n",
|
| 258 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-AWQ\",\n",
|
| 259 |
-
" repo_type=\"model\",\n",
|
| 260 |
-
" exist_ok=True,\n",
|
| 261 |
-
" token=hf_token\n",
|
| 262 |
-
")\n",
|
| 263 |
-
"api.upload_folder(\n",
|
| 264 |
-
" folder_path=save_folder,\n",
|
| 265 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-AWQ\",\n",
|
| 266 |
-
" token=hf_token\n",
|
| 267 |
-
")"
|
| 268 |
-
]
|
| 269 |
-
},
|
| 270 |
-
{
|
| 271 |
-
"cell_type": "code",
|
| 272 |
-
"execution_count": null,
|
| 273 |
-
"metadata": {
|
| 274 |
-
"cellView": "form",
|
| 275 |
-
"id": "iEhLsUjcnNR7"
|
| 276 |
-
},
|
| 277 |
-
"outputs": [],
|
| 278 |
-
"source": [
|
| 279 |
-
"# @title ## 🐘 HQQ\n",
|
| 280 |
-
"\n",
|
| 281 |
-
"# @markdown See the official [HQQ repository](https://github.com/mobiusml/hqq) for more information.\n",
|
| 282 |
-
"\n",
|
| 283 |
-
"!git clone https://github.com/mobiusml/hqq.git\n",
|
| 284 |
-
"!pip install -e hqq\n",
|
| 285 |
-
"!python hqq/kernels/setup_cuda.py install\n",
|
| 286 |
-
"!pip install flash-attn --no-build-isolation\n",
|
| 287 |
-
"!pip install transformers --upgrade\n",
|
| 288 |
-
"!num_threads=8; OMP_NUM_THREADS=$num_threads CUDA_VISIBLE_DEVICES=0\n",
|
| 289 |
-
"\n",
|
| 290 |
-
"import torch\n",
|
| 291 |
-
"from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer\n",
|
| 292 |
-
"from hqq.models.hf.base import AutoHQQHFModel\n",
|
| 293 |
-
"from hqq.core.quantize import *\n",
|
| 294 |
-
"\n",
|
| 295 |
-
"BITS = 2 # @param {type:\"integer\"}\n",
|
| 296 |
-
"GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
|
| 297 |
-
"\n",
|
| 298 |
-
"# Quant config\n",
|
| 299 |
-
"quant_config = BaseQuantizeConfig(\n",
|
| 300 |
-
" nbits=BITS,\n",
|
| 301 |
-
" group_size=GROUP_SIZE\n",
|
| 302 |
-
")\n",
|
| 303 |
-
"\n",
|
| 304 |
-
"# Quantize model\n",
|
| 305 |
-
"model = HQQModelForCausalLM.from_pretrained(\n",
|
| 306 |
-
" MODEL_ID,\n",
|
| 307 |
-
" cache_dir=\".\",\n",
|
| 308 |
-
" attn_implementation=\"flash_attention_2\"\n",
|
| 309 |
-
")\n",
|
| 310 |
-
"tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)\n",
|
| 311 |
-
"model.quantize_model(quant_config=quant_config, device='cuda')\n",
|
| 312 |
-
"\n",
|
| 313 |
-
"# Save model and tokenizer\n",
|
| 314 |
-
"save_folder = MODEL_ID + \"-HQQ\"\n",
|
| 315 |
-
"model.save_quantized(save_folder)\n",
|
| 316 |
-
"tokenizer.save_pretrained(save_folder)\n",
|
| 317 |
-
"\n",
|
| 318 |
-
"# Create model card\n",
|
| 319 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
| 320 |
-
"card.data.tags.append(\"autoquant\")\n",
|
| 321 |
-
"card.data.tags.append(\"hqq\")\n",
|
| 322 |
-
"card.save(f'{save_folder}/README.md')\n",
|
| 323 |
-
"\n",
|
| 324 |
-
"# Upload model\n",
|
| 325 |
-
"create_repo(\n",
|
| 326 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-{BITS}bit-HQQ\",\n",
|
| 327 |
-
" repo_type=\"model\",\n",
|
| 328 |
-
" exist_ok=True,\n",
|
| 329 |
-
" token=hf_token\n",
|
| 330 |
-
")\n",
|
| 331 |
-
"api.upload_folder(\n",
|
| 332 |
-
" folder_path=save_folder,\n",
|
| 333 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-{BITS}bit-HQQ\",\n",
|
| 334 |
-
" token=hf_token\n",
|
| 335 |
-
")"
|
| 336 |
-
]
|
| 337 |
-
}
|
| 338 |
-
],
|
| 339 |
-
"metadata": {
|
| 340 |
-
"accelerator": "GPU",
|
| 341 |
-
"colab": {
|
| 342 |
-
"gpuType": "T4",
|
| 343 |
-
"provenance": []
|
| 344 |
-
},
|
| 345 |
-
"kernelspec": {
|
| 346 |
-
"display_name": "Python 3",
|
| 347 |
-
"name": "python3"
|
| 348 |
-
},
|
| 349 |
-
"language_info": {
|
| 350 |
-
"name": "python"
|
| 351 |
-
}
|
| 352 |
-
},
|
| 353 |
-
"nbformat": 4,
|
| 354 |
-
"nbformat_minor": 0
|
| 355 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|