Delete Finetuning_NoteBook.ipynb
Browse files- Finetuning_NoteBook.ipynb +0 -597
Finetuning_NoteBook.ipynb
DELETED
|
@@ -1,597 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"id": "ba5a3824",
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"source": [
|
| 8 |
-
"# Installing Required Libraries!"
|
| 9 |
-
]
|
| 10 |
-
},
|
| 11 |
-
{
|
| 12 |
-
"cell_type": "markdown",
|
| 13 |
-
"id": "bb5c2ce5",
|
| 14 |
-
"metadata": {},
|
| 15 |
-
"source": [
|
| 16 |
-
"Installing required libraries, including trl, transformers, accelerate, peft, datasets, and bitsandbytes."
|
| 17 |
-
]
|
| 18 |
-
},
|
| 19 |
-
{
|
| 20 |
-
"cell_type": "code",
|
| 21 |
-
"execution_count": null,
|
| 22 |
-
"id": "fb17ce11",
|
| 23 |
-
"metadata": {},
|
| 24 |
-
"outputs": [],
|
| 25 |
-
"source": [
|
| 26 |
-
"\n",
|
| 27 |
-
"# Checks if PyTorch is installed and installs it if not.\n",
|
| 28 |
-
"try:\n",
|
| 29 |
-
" import torch\n",
|
| 30 |
-
" print(\"PyTorch is installed!\")\n",
|
| 31 |
-
"except ImportError:\n",
|
| 32 |
-
" print(\"PyTorch is not installed.\")\n",
|
| 33 |
-
" !pip install -q torch\n"
|
| 34 |
-
]
|
| 35 |
-
},
|
| 36 |
-
{
|
| 37 |
-
"cell_type": "code",
|
| 38 |
-
"execution_count": null,
|
| 39 |
-
"id": "5f38ad58",
|
| 40 |
-
"metadata": {},
|
| 41 |
-
"outputs": [],
|
| 42 |
-
"source": [
|
| 43 |
-
"\n",
|
| 44 |
-
"!pip install -q --upgrade \"transformers==4.38.2\"\n",
|
| 45 |
-
"!pip install -q --upgrade \"datasets==2.16.1\"\n",
|
| 46 |
-
"!pip install -q --upgrade \"accelerate==0.26.1\"\n",
|
| 47 |
-
"!pip install -q --upgrade \"evaluate==0.4.1\"\n",
|
| 48 |
-
"!pip install -q --upgrade \"bitsandbytes==0.42.0\"\n",
|
| 49 |
-
"!pip install -q --upgrade \"trl==0.7.11\"\n",
|
| 50 |
-
"!pip install -q --upgrade \"peft==0.8.2\"\n",
|
| 51 |
-
" "
|
| 52 |
-
]
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"cell_type": "markdown",
|
| 56 |
-
"id": "98e65745",
|
| 57 |
-
"metadata": {},
|
| 58 |
-
"source": [
|
| 59 |
-
"# Load and Prepare the Dataset"
|
| 60 |
-
]
|
| 61 |
-
},
|
| 62 |
-
{
|
| 63 |
-
"cell_type": "markdown",
|
| 64 |
-
"id": "7cf4cbb2",
|
| 65 |
-
"metadata": {},
|
| 66 |
-
"source": [
|
| 67 |
-
"The dataset is already formatted in a conversational format, which is supported by [trl](https://huggingface.co/docs/trl/index/), and ready for supervised finetuning."
|
| 68 |
-
]
|
| 69 |
-
},
|
| 70 |
-
{
|
| 71 |
-
"cell_type": "markdown",
|
| 72 |
-
"id": "7c50d411",
|
| 73 |
-
"metadata": {},
|
| 74 |
-
"source": [
|
| 75 |
-
"\n",
|
| 76 |
-
"**Conversational format:**\n",
|
| 77 |
-
"\n",
|
| 78 |
-
"\n",
|
| 79 |
-
"```python {\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
| 80 |
-
"{\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
| 81 |
-
"{\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
| 82 |
-
"```\n"
|
| 83 |
-
]
|
| 84 |
-
},
|
| 85 |
-
{
|
| 86 |
-
"cell_type": "code",
|
| 87 |
-
"execution_count": null,
|
| 88 |
-
"id": "60321c78",
|
| 89 |
-
"metadata": {},
|
| 90 |
-
"outputs": [],
|
| 91 |
-
"source": [
|
| 92 |
-
"\n",
|
| 93 |
-
"from datasets import load_dataset\n",
|
| 94 |
-
" \n",
|
| 95 |
-
"# Load dataset from the hub\n",
|
| 96 |
-
"dataset = load_dataset(\"HuggingFaceH4/ultrachat_200k\", split=\"train_sft\")\n",
|
| 97 |
-
" \n",
|
| 98 |
-
"dataset = dataset.shuffle(seed=42)\n",
|
| 99 |
-
" "
|
| 100 |
-
]
|
| 101 |
-
},
|
| 102 |
-
{
|
| 103 |
-
"cell_type": "markdown",
|
| 104 |
-
"id": "5fdaa4ee",
|
| 105 |
-
"metadata": {},
|
| 106 |
-
"source": [
|
| 107 |
-
"# Load **mistralai/Mistral-7B-v0.1** for Finetuning"
|
| 108 |
-
]
|
| 109 |
-
},
|
| 110 |
-
{
|
| 111 |
-
"cell_type": "markdown",
|
| 112 |
-
"id": "e046840e",
|
| 113 |
-
"metadata": {},
|
| 114 |
-
"source": [
|
| 115 |
-
"\n",
|
| 116 |
-
"This process involves two key steps:\n",
|
| 117 |
-
"\n",
|
| 118 |
-
"1. **LLM Quantization:**\n",
|
| 119 |
-
" - We first load the selected large language model (LLM).\n",
|
| 120 |
-
" - We then use the `bitsandbytes` library to quantize the model, which can significantly reduce its memory footprint.\n",
|
| 121 |
-
"\n",
|
| 122 |
-
"> **Note:** The memory requirements of the model scale with its size. For instance, a 7B parameter model may require \n",
|
| 123 |
-
"a 24GB GPU for fine-tuning. \n",
|
| 124 |
-
"\n",
|
| 125 |
-
"2. **Chat Model Preparation:**\n",
|
| 126 |
-
" - To train a model for chat/conversational tasks, we need to prepare both the model and its tokenizer.\n",
|
| 127 |
-
" \n",
|
| 128 |
-
" - This involves adding special tokens to the tokenizer and the model itself. These tokens help the model \n",
|
| 129 |
-
" understand the different roles within a conversation. \n",
|
| 130 |
-
" \n",
|
| 131 |
-
" - The **trl** provides a convenient method called `setup_chat_format` for this purpose. This method performs the \n",
|
| 132 |
-
" following actions: \n",
|
| 133 |
-
" \n",
|
| 134 |
-
" * Adds special tokens to the tokenizer, such as `<|im_start|>` and `<|im_end|>`, to mark the beginning and \n",
|
| 135 |
-
" ending of a conversation. \n",
|
| 136 |
-
" \n",
|
| 137 |
-
" * Resizes the model's embedding layer to accommodate the new tokens.\n",
|
| 138 |
-
" \n",
|
| 139 |
-
" * Sets the tokenizer's chat template, which defines the format used to convert input data into a chat-like \n",
|
| 140 |
-
" structure. The default template is `chatml` from OpenAI.\n",
|
| 141 |
-
"\n",
|
| 142 |
-
"\n"
|
| 143 |
-
]
|
| 144 |
-
},
|
| 145 |
-
{
|
| 146 |
-
"cell_type": "code",
|
| 147 |
-
"execution_count": null,
|
| 148 |
-
"id": "e2af96b6",
|
| 149 |
-
"metadata": {},
|
| 150 |
-
"outputs": [],
|
| 151 |
-
"source": [
|
| 152 |
-
"\n",
|
| 153 |
-
"import torch\n",
|
| 154 |
-
"from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
|
| 155 |
-
"from trl import setup_chat_format\n",
|
| 156 |
-
"\n",
|
| 157 |
-
"# Hugging Face model id\n",
|
| 158 |
-
"model_id = \"mistralai/Mistral-7B-v0.1\"\n",
|
| 159 |
-
"\n",
|
| 160 |
-
"# BitsAndBytesConfig\n",
|
| 161 |
-
"bnb_config = BitsAndBytesConfig(\n",
|
| 162 |
-
" load_in_8bit=True, bnb_4bit_use_double_quant=True, \n",
|
| 163 |
-
" bnb_4bit_quant_type=\"nf4\", bnb_4bit_compute_dtype=torch.bfloat16 \n",
|
| 164 |
-
")\n",
|
| 165 |
-
"\n",
|
| 166 |
-
"# Load model and tokenizer\n",
|
| 167 |
-
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 168 |
-
" model_id,\n",
|
| 169 |
-
" device_map=\"auto\",\n",
|
| 170 |
-
" trust_remote_code=True,\n",
|
| 171 |
-
" \n",
|
| 172 |
-
" torch_dtype=torch.bfloat16,\n",
|
| 173 |
-
" quantization_config=bnb_config\n",
|
| 174 |
-
")\n",
|
| 175 |
-
"\n",
|
| 176 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"mistralai/Mistral-7B-v0.1\")\n",
|
| 177 |
-
"tokenizer.padding_side = \"right\"\n",
|
| 178 |
-
"\n",
|
| 179 |
-
"\n",
|
| 180 |
-
"# Set chat template to OAI chatML\n",
|
| 181 |
-
"model, tokenizer = setup_chat_format(model, tokenizer)\n",
|
| 182 |
-
"\n",
|
| 183 |
-
" "
|
| 184 |
-
]
|
| 185 |
-
},
|
| 186 |
-
{
|
| 187 |
-
"cell_type": "markdown",
|
| 188 |
-
"id": "1b837560",
|
| 189 |
-
"metadata": {},
|
| 190 |
-
"source": [
|
| 191 |
-
"## Setting LoRA Config"
|
| 192 |
-
]
|
| 193 |
-
},
|
| 194 |
-
{
|
| 195 |
-
"cell_type": "markdown",
|
| 196 |
-
"id": "4617d5d0",
|
| 197 |
-
"metadata": {},
|
| 198 |
-
"source": [
|
| 199 |
-
"The `SFTTrainer` provides native integration with `peft`, simplifying the process of efficiently tuning \n",
|
| 200 |
-
" Language Models (LLMs) using techniques such as [LoRA](\n",
|
| 201 |
-
" https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms). The only requirement is to create \n",
|
| 202 |
-
" the `LoraConfig` and pass it to the `SFTTrainer`. \n",
|
| 203 |
-
" "
|
| 204 |
-
]
|
| 205 |
-
},
|
| 206 |
-
{
|
| 207 |
-
"cell_type": "code",
|
| 208 |
-
"execution_count": null,
|
| 209 |
-
"id": "b6244b7f",
|
| 210 |
-
"metadata": {},
|
| 211 |
-
"outputs": [],
|
| 212 |
-
"source": [
|
| 213 |
-
"\n",
|
| 214 |
-
"from peft import LoraConfig\n",
|
| 215 |
-
"\n",
|
| 216 |
-
"peft_config = LoraConfig(\n",
|
| 217 |
-
" lora_alpha=8,\n",
|
| 218 |
-
" lora_dropout=0.05,\n",
|
| 219 |
-
" r=6,\n",
|
| 220 |
-
" bias=\"none\",\n",
|
| 221 |
-
" target_modules=\"all-linear\",\n",
|
| 222 |
-
" task_type=\"CAUSAL_LM\"\n",
|
| 223 |
-
")\n",
|
| 224 |
-
" "
|
| 225 |
-
]
|
| 226 |
-
},
|
| 227 |
-
{
|
| 228 |
-
"cell_type": "markdown",
|
| 229 |
-
"id": "e5ffc4bd",
|
| 230 |
-
"metadata": {},
|
| 231 |
-
"source": [
|
| 232 |
-
"## Setting the TrainingArguments"
|
| 233 |
-
]
|
| 234 |
-
},
|
| 235 |
-
{
|
| 236 |
-
"cell_type": "code",
|
| 237 |
-
"execution_count": null,
|
| 238 |
-
"id": "eac8898f",
|
| 239 |
-
"metadata": {},
|
| 240 |
-
"outputs": [],
|
| 241 |
-
"source": [
|
| 242 |
-
"\n",
|
| 243 |
-
"# Installing tensorboard to report the metrics\n",
|
| 244 |
-
"!pip install -q tensorboard\n",
|
| 245 |
-
" "
|
| 246 |
-
]
|
| 247 |
-
},
|
| 248 |
-
{
|
| 249 |
-
"cell_type": "code",
|
| 250 |
-
"execution_count": null,
|
| 251 |
-
"id": "12aa9947",
|
| 252 |
-
"metadata": {},
|
| 253 |
-
"outputs": [],
|
| 254 |
-
"source": [
|
| 255 |
-
"\n",
|
| 256 |
-
"from transformers import TrainingArguments\n",
|
| 257 |
-
"\n",
|
| 258 |
-
"args = TrainingArguments(\n",
|
| 259 |
-
" output_dir=\"temp_/LChat-7b\",\n",
|
| 260 |
-
" num_train_epochs=100,\n",
|
| 261 |
-
" per_device_train_batch_size=3,\n",
|
| 262 |
-
" gradient_accumulation_steps=2,\n",
|
| 263 |
-
" gradient_checkpointing=True,\n",
|
| 264 |
-
" gradient_checkpointing_kwargs={'use_reentrant': False},\n",
|
| 265 |
-
" optim=\"adamw_torch_fused\",\n",
|
| 266 |
-
" logging_steps=10,\n",
|
| 267 |
-
" save_strategy='epoch',\n",
|
| 268 |
-
" learning_rate=0.075,\n",
|
| 269 |
-
" bf16=True,\n",
|
| 270 |
-
" max_grad_norm=0.3,\n",
|
| 271 |
-
" warmup_ratio=0.1,\n",
|
| 272 |
-
" lr_scheduler_type='cosine',\n",
|
| 273 |
-
" report_to='tensorboard', \n",
|
| 274 |
-
" max_steps=-1,\n",
|
| 275 |
-
" seed=42,\n",
|
| 276 |
-
" overwrite_output_dir=True,\n",
|
| 277 |
-
" remove_unused_columns=True\n",
|
| 278 |
-
")\n",
|
| 279 |
-
" "
|
| 280 |
-
]
|
| 281 |
-
},
|
| 282 |
-
{
|
| 283 |
-
"cell_type": "markdown",
|
| 284 |
-
"id": "5c895809",
|
| 285 |
-
"metadata": {},
|
| 286 |
-
"source": [
|
| 287 |
-
"## Setting the Supervised Finetuning Trainer (`SFTTrainer`)\n",
|
| 288 |
-
" \n",
|
| 289 |
-
"This `SFTTrainer` is a wrapper around the `transformers.Trainer` class and inherits all of its attributes and methods.\n",
|
| 290 |
-
"The trainer takes care of properly initializing the `PeftModel`. \n",
|
| 291 |
-
" "
|
| 292 |
-
]
|
| 293 |
-
},
|
| 294 |
-
{
|
| 295 |
-
"cell_type": "code",
|
| 296 |
-
"execution_count": null,
|
| 297 |
-
"id": "d269b68a",
|
| 298 |
-
"metadata": {},
|
| 299 |
-
"outputs": [],
|
| 300 |
-
"source": [
|
| 301 |
-
"\n",
|
| 302 |
-
"from trl import SFTTrainer\n",
|
| 303 |
-
"\n",
|
| 304 |
-
"trainer = SFTTrainer(\n",
|
| 305 |
-
" model=model,\n",
|
| 306 |
-
" args=args,\n",
|
| 307 |
-
" train_dataset=dataset,\n",
|
| 308 |
-
" peft_config=peft_config,\n",
|
| 309 |
-
" max_seq_length=2048,\n",
|
| 310 |
-
" tokenizer=tokenizer,\n",
|
| 311 |
-
" packing=True,\n",
|
| 312 |
-
" dataset_kwargs={'add_special_tokens': False, 'append_concat_token': False}\n",
|
| 313 |
-
")\n"
|
| 314 |
-
]
|
| 315 |
-
},
|
| 316 |
-
{
|
| 317 |
-
"cell_type": "markdown",
|
| 318 |
-
"id": "b05793a3",
|
| 319 |
-
"metadata": {},
|
| 320 |
-
"source": [
|
| 321 |
-
"### Starting Training and Saving Model/Tokenizer\n",
|
| 322 |
-
"\n",
|
| 323 |
-
"We start training the model by calling the `train()` method on the trainer instance. This will start the training \n",
|
| 324 |
-
"loop and train the model for `100 epochs`. The model will be automatically saved to the output directory (**'temp_/LChat-7b'**)\n",
|
| 325 |
-
"and to the hub in **'User//LChat-7b'**. \n",
|
| 326 |
-
" \n",
|
| 327 |
-
" "
|
| 328 |
-
]
|
| 329 |
-
},
|
| 330 |
-
{
|
| 331 |
-
"cell_type": "code",
|
| 332 |
-
"execution_count": null,
|
| 333 |
-
"id": "f56066fc",
|
| 334 |
-
"metadata": {},
|
| 335 |
-
"outputs": [],
|
| 336 |
-
"source": [
|
| 337 |
-
"\n",
|
| 338 |
-
"\n",
|
| 339 |
-
"model.config.use_cache = False\n",
|
| 340 |
-
"\n",
|
| 341 |
-
"# start training\n",
|
| 342 |
-
"trainer.train()\n",
|
| 343 |
-
"\n",
|
| 344 |
-
"# save the peft model\n",
|
| 345 |
-
"trainer.save_model()\n"
|
| 346 |
-
]
|
| 347 |
-
},
|
| 348 |
-
{
|
| 349 |
-
"cell_type": "markdown",
|
| 350 |
-
"id": "8bd579bb",
|
| 351 |
-
"metadata": {},
|
| 352 |
-
"source": [
|
| 353 |
-
"### Free the GPU Memory to Prepare Merging `LoRA` Adapters with the Base Model\n"
|
| 354 |
-
]
|
| 355 |
-
},
|
| 356 |
-
{
|
| 357 |
-
"cell_type": "code",
|
| 358 |
-
"execution_count": null,
|
| 359 |
-
"id": "e2b25dc2",
|
| 360 |
-
"metadata": {},
|
| 361 |
-
"outputs": [],
|
| 362 |
-
"source": [
|
| 363 |
-
"\n",
|
| 364 |
-
"\n",
|
| 365 |
-
"# Free the GPU memory\n",
|
| 366 |
-
"del model\n",
|
| 367 |
-
"del trainer\n",
|
| 368 |
-
"torch.cuda.empty_cache()\n"
|
| 369 |
-
]
|
| 370 |
-
},
|
| 371 |
-
{
|
| 372 |
-
"cell_type": "markdown",
|
| 373 |
-
"id": "8b9955ad",
|
| 374 |
-
"metadata": {},
|
| 375 |
-
"source": [
|
| 376 |
-
"## Merging LoRA Adapters into the Original Model\n",
|
| 377 |
-
"\n",
|
| 378 |
-
"While utilizing `LoRA`, we focus on training the adapters rather than the entire model. Consequently, during the \n",
|
| 379 |
-
"model saving process, only the `adapter weights` are preserved, not the complete model. If we wish to save the \n",
|
| 380 |
-
"entire model for easier usage with Text Generation Inference, we can incorporate the adapter weights into the model \n",
|
| 381 |
-
"weights. This can be achieved using the `merge_and_unload` method. Following this, the model can be saved using the \n",
|
| 382 |
-
"`save_pretrained` method. The result is a default model that is ready for inference.\n"
|
| 383 |
-
]
|
| 384 |
-
},
|
| 385 |
-
{
|
| 386 |
-
"cell_type": "code",
|
| 387 |
-
"execution_count": null,
|
| 388 |
-
"id": "64d5cd68",
|
| 389 |
-
"metadata": {},
|
| 390 |
-
"outputs": [],
|
| 391 |
-
"source": [
|
| 392 |
-
"\n",
|
| 393 |
-
"import torch\n",
|
| 394 |
-
"from peft import AutoPeftModelForCausalLM\n",
|
| 395 |
-
"\n",
|
| 396 |
-
"# Load Peft model on CPU\n",
|
| 397 |
-
"model = AutoPeftModelForCausalLM.from_pretrained(\n",
|
| 398 |
-
" \"temp_/LChat-7b\",\n",
|
| 399 |
-
" torch_dtype=torch.float16,\n",
|
| 400 |
-
" low_cpu_mem_usage=True\n",
|
| 401 |
-
")\n",
|
| 402 |
-
" \n",
|
| 403 |
-
"# Merge LoRA with the base model and save\n",
|
| 404 |
-
"merged_model = model.merge_and_unload()\n",
|
| 405 |
-
"merged_model.save_pretrained(\"/LChat-7b\", safe_serialization=True, max_shard_size=\"2GB\")\n",
|
| 406 |
-
"tokenizer.save_pretrained(\"/LChat-7b\")\n"
|
| 407 |
-
]
|
| 408 |
-
},
|
| 409 |
-
{
|
| 410 |
-
"cell_type": "markdown",
|
| 411 |
-
"id": "e8f96a1d",
|
| 412 |
-
"metadata": {},
|
| 413 |
-
"source": [
|
| 414 |
-
"### Copy all result folders from 'temp_/LChat-7b' to '/LChat-7b'"
|
| 415 |
-
]
|
| 416 |
-
},
|
| 417 |
-
{
|
| 418 |
-
"cell_type": "code",
|
| 419 |
-
"execution_count": null,
|
| 420 |
-
"id": "0f28559e",
|
| 421 |
-
"metadata": {},
|
| 422 |
-
"outputs": [],
|
| 423 |
-
"source": [
|
| 424 |
-
"\n",
|
| 425 |
-
"import os\n",
|
| 426 |
-
"import shutil\n",
|
| 427 |
-
"\n",
|
| 428 |
-
"source_folder = \"temp_/LChat-7b\"\n",
|
| 429 |
-
"destination_folder = \"/LChat-7b\"\n",
|
| 430 |
-
"os.makedirs(destination_folder, exist_ok=True)\n",
|
| 431 |
-
"for item in os.listdir(source_folder):\n",
|
| 432 |
-
" item_path = os.path.join(source_folder, item)\n",
|
| 433 |
-
" if os.path.isdir(item_path):\n",
|
| 434 |
-
" destination_path = os.path.join(destination_folder, item)\n",
|
| 435 |
-
" shutil.copytree(item_path, destination_path)\n"
|
| 436 |
-
]
|
| 437 |
-
},
|
| 438 |
-
{
|
| 439 |
-
"cell_type": "markdown",
|
| 440 |
-
"id": "60bf3de1",
|
| 441 |
-
"metadata": {},
|
| 442 |
-
"source": [
|
| 443 |
-
"### Generating a model card (README.md)"
|
| 444 |
-
]
|
| 445 |
-
},
|
| 446 |
-
{
|
| 447 |
-
"cell_type": "code",
|
| 448 |
-
"execution_count": null,
|
| 449 |
-
"id": "97fe2e33",
|
| 450 |
-
"metadata": {},
|
| 451 |
-
"outputs": [],
|
| 452 |
-
"source": [
|
| 453 |
-
"\n",
|
| 454 |
-
"card = '''\n",
|
| 455 |
-
"---\n",
|
| 456 |
-
"license: apache-2.0\n",
|
| 457 |
-
"tags:\n",
|
| 458 |
-
"- generated_from_trainer\n",
|
| 459 |
-
"- mistralai/Mistral\n",
|
| 460 |
-
"- PyTorch\n",
|
| 461 |
-
"- transformers\n",
|
| 462 |
-
"- trl\n",
|
| 463 |
-
"- peft\n",
|
| 464 |
-
"- tensorboard\n",
|
| 465 |
-
"base_model: mistralai/Mistral-7B-v0.1\n",
|
| 466 |
-
"widget:\n",
|
| 467 |
-
" - example_title: Pirate!\n",
|
| 468 |
-
" messages:\n",
|
| 469 |
-
" - role: system\n",
|
| 470 |
-
" content: You are a pirate chatbot who always responds with Arr!\n",
|
| 471 |
-
" - role: user\n",
|
| 472 |
-
" content: \"There's a llama on my lawn, how can I get rid of him?\"\n",
|
| 473 |
-
" output:\n",
|
| 474 |
-
" text: >-\n",
|
| 475 |
-
" Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare\n",
|
| 476 |
-
" sight, but I've got a plan that might help ye get rid of 'im. Ye'll need\n",
|
| 477 |
-
" to gather some carrots and hay, and then lure the llama away with the\n",
|
| 478 |
-
" promise of a tasty treat. Once he's gone, ye can clean up yer lawn and\n",
|
| 479 |
-
" enjoy the peace and quiet once again. But beware, me hearty, for there\n",
|
| 480 |
-
" may be more llamas where that one came from! Arr!\n",
|
| 481 |
-
"model-index:\n",
|
| 482 |
-
"- name: LChat-7b\n",
|
| 483 |
-
" results: []\n",
|
| 484 |
-
"datasets:\n",
|
| 485 |
-
"- HuggingFaceH4/ultrachat_200k\n",
|
| 486 |
-
"language:\n",
|
| 487 |
-
"- en\n",
|
| 488 |
-
"pipeline_tag: text-generation\n",
|
| 489 |
-
"---\n",
|
| 490 |
-
"\n",
|
| 491 |
-
"# Model Card for LChat-7b:\n",
|
| 492 |
-
"\n",
|
| 493 |
-
"**LChat-7b** is a language model that is trained to act as helpful assistant. It is a finetuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained using `SFTTrainer` on publicly available dataset [\n",
|
| 494 |
-
"HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k).\n",
|
| 495 |
-
"\n",
|
| 496 |
-
"## Training Procedure:\n",
|
| 497 |
-
"\n",
|
| 498 |
-
"The training code used to create this model was generated by [Menouar/LLM-FineTuning-Notebook-Generator](https://huggingface.co/spaces/Menouar/LLM-FineTuning-Notebook-Generator).\n",
|
| 499 |
-
"\n",
|
| 500 |
-
"\n",
|
| 501 |
-
"\n",
|
| 502 |
-
"## Training hyperparameters\n",
|
| 503 |
-
"\n",
|
| 504 |
-
"The following hyperparameters were used during the training:\n",
|
| 505 |
-
"\n",
|
| 506 |
-
"\n",
|
| 507 |
-
"'''\n",
|
| 508 |
-
"\n",
|
| 509 |
-
"with open(\"/LChat-7b/README.md\", \"w\") as f:\n",
|
| 510 |
-
" f.write(card)\n",
|
| 511 |
-
"\n",
|
| 512 |
-
"args_dict = vars(args)\n",
|
| 513 |
-
"\n",
|
| 514 |
-
"with open(\"/LChat-7b/README.md\", \"a\") as f:\n",
|
| 515 |
-
" for k, v in args_dict.items():\n",
|
| 516 |
-
" f.write(f\"- {k}: {v}\")\n",
|
| 517 |
-
" f.write(\"\\n \\n\")\n"
|
| 518 |
-
]
|
| 519 |
-
},
|
| 520 |
-
{
|
| 521 |
-
"cell_type": "markdown",
|
| 522 |
-
"id": "6947c4c1",
|
| 523 |
-
"metadata": {},
|
| 524 |
-
"source": [
|
| 525 |
-
"## Login to HF"
|
| 526 |
-
]
|
| 527 |
-
},
|
| 528 |
-
{
|
| 529 |
-
"cell_type": "markdown",
|
| 530 |
-
"id": "bafb24fe",
|
| 531 |
-
"metadata": {},
|
| 532 |
-
"source": [
|
| 533 |
-
"Replace `HF_TOKEN` with a valid token in order to push **'/LChat-7b'** to `huggingface_hub`."
|
| 534 |
-
]
|
| 535 |
-
},
|
| 536 |
-
{
|
| 537 |
-
"cell_type": "code",
|
| 538 |
-
"execution_count": null,
|
| 539 |
-
"id": "e498576f",
|
| 540 |
-
"metadata": {},
|
| 541 |
-
"outputs": [],
|
| 542 |
-
"source": [
|
| 543 |
-
"\n",
|
| 544 |
-
"# Install huggingface_hub\n",
|
| 545 |
-
"!pip install -q huggingface_hub\n",
|
| 546 |
-
" \n",
|
| 547 |
-
"from huggingface_hub import login\n",
|
| 548 |
-
" \n",
|
| 549 |
-
"login(\n",
|
| 550 |
-
" token='_gxyairSqRlrHFswgszIHJmObFVaGSDGcEk',\n",
|
| 551 |
-
" add_to_git_credential=True\n",
|
| 552 |
-
")\n",
|
| 553 |
-
" "
|
| 554 |
-
]
|
| 555 |
-
},
|
| 556 |
-
{
|
| 557 |
-
"cell_type": "markdown",
|
| 558 |
-
"id": "6f5071dd",
|
| 559 |
-
"metadata": {},
|
| 560 |
-
"source": [
|
| 561 |
-
"## Pushing '/LChat-7b' to the Hugging Face account."
|
| 562 |
-
]
|
| 563 |
-
},
|
| 564 |
-
{
|
| 565 |
-
"cell_type": "code",
|
| 566 |
-
"execution_count": null,
|
| 567 |
-
"id": "13ba8863",
|
| 568 |
-
"metadata": {},
|
| 569 |
-
"outputs": [],
|
| 570 |
-
"source": [
|
| 571 |
-
"\n",
|
| 572 |
-
"from huggingface_hub import HfApi, HfFolder, Repository\n",
|
| 573 |
-
"\n",
|
| 574 |
-
"# Instantiate the HfApi class\n",
|
| 575 |
-
"api = HfApi()\n",
|
| 576 |
-
"\n",
|
| 577 |
-
"# Our Hugging Face repository\n",
|
| 578 |
-
"repo_name = \"LChat-7b\"\n",
|
| 579 |
-
"\n",
|
| 580 |
-
"# Create a repository on the Hugging Face Hub\n",
|
| 581 |
-
"repo = api.create_repo(token=HfFolder.get_token(), repo_type=\"model\", repo_id=repo_name)\n",
|
| 582 |
-
"\n",
|
| 583 |
-
"api.upload_folder(\n",
|
| 584 |
-
" folder_path=\"/LChat-7b\",\n",
|
| 585 |
-
" repo_id=repo.repo_id\n",
|
| 586 |
-
")\n"
|
| 587 |
-
]
|
| 588 |
-
}
|
| 589 |
-
],
|
| 590 |
-
"metadata": {
|
| 591 |
-
"language_info": {
|
| 592 |
-
"name": "python"
|
| 593 |
-
}
|
| 594 |
-
},
|
| 595 |
-
"nbformat": 4,
|
| 596 |
-
"nbformat_minor": 5
|
| 597 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|