File size: 5,980 Bytes
5f741a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import pandas as pd
import gradio as gr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import joblib

# Generate more realistic synthetic genetic data
def generate_realistic_genetic_data(n_samples=1000):
    np.random.seed(42)

    # Define genetic markers associated with different conditions
    # Marker ranges based on typical genetic variation patterns
    genetic_data = {
        'BRCA1_mutation': np.random.choice([0, 1], size=n_samples, p=[0.95, 0.05]),  # BRCA1 mutation
        'P53_variation': np.random.normal(0.5, 0.1, n_samples),  # P53 tumor suppressor variation
        'APOE_allele': np.random.choice([2, 3, 4], size=n_samples, p=[0.1, 0.7, 0.2]),  # APOE allele types
        'DNA_methylation': np.random.beta(2, 5, n_samples),  # DNA methylation levels
        'telomere_length': np.random.normal(6000, 1000, n_samples),  # Telomere length
        'CYP2D6_activity': np.random.gamma(2, 2, n_samples),  # CYP2D6 enzyme activity
        'inflammatory_markers': np.random.exponential(2, n_samples),  # Inflammatory markers
        'glucose_metabolism': np.random.normal(100, 15, n_samples),  # Glucose metabolism
        'oxidative_stress': np.random.gamma(3, 1, n_samples),  # Oxidative stress levels
        'immune_response': np.random.normal(0.7, 0.1, n_samples)  # Immune response strength
    }

    # Create DataFrame
    df = pd.DataFrame(genetic_data)

    # Generate disease status based on complex interactions
    disease_probability = (
        0.3 * genetic_data['BRCA1_mutation'] +
        0.2 * (genetic_data['P53_variation'] > 0.7) +
        0.15 * (genetic_data['APOE_allele'] == 4) +
        0.1 * (genetic_data['DNA_methylation'] > 0.6) +
        0.05 * (genetic_data['telomere_length'] < 5000) +
        0.1 * (genetic_data['CYP2D6_activity'] > 5) +
        0.05 * (genetic_data['inflammatory_markers'] > 3) +
        0.05 * (genetic_data['glucose_metabolism'] > 120)
    )

    df['disease'] = (disease_probability > 0.5).astype(int)

    return df

# Data preprocessing
def preprocess_data(data):
    X = data.drop('disease', axis=1)
    y = data['disease']

    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)

    return X_scaled, y, scaler

# Train and evaluate model
def train_and_evaluate_model():
    # Generate and preprocess data
    print("Generating synthetic genetic data...")
    data = generate_realistic_genetic_data(1500)
    print("\nData Sample:")
    print(data.head())
    print("\nData Statistics:")
    print(data.describe())

    # Preprocess data
    X_scaled, y, scaler = preprocess_data(data)

    # Split data
    X_train, X_test, y_train, y_test = train_test_split(
        X_scaled, y, test_size=0.2, random_state=42
    )

    # Train model
    print("\nTraining Random Forest model...")
    model = RandomForestClassifier(
        n_estimators=100,
        max_depth=5,
        random_state=42
    )
    model.fit(X_train, y_train)

    # Evaluate model
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print("\nModel Evaluation:")
    print(f"Accuracy: {accuracy:.2f}")
    print("\nClassification Report:")
    print(classification_report(y_test, y_pred))

    # Feature importance
    feature_importance = pd.DataFrame({
        'feature': data.drop('disease', axis=1).columns,
        'importance': model.feature_importances_
    })
    print("\nFeature Importance:")
    print(feature_importance.sort_values('importance', ascending=False))

    return model, scaler

# Prediction function
def predict_disease(
    brca1_mutation, p53_variation, apoe_allele, dna_methylation,
    telomere_length, cyp2d6_activity, inflammatory_markers,
    glucose_metabolism, oxidative_stress, immune_response
):
    # Create input array
    input_data = np.array([
        brca1_mutation, p53_variation, apoe_allele, dna_methylation,
        telomere_length, cyp2d6_activity, inflammatory_markers,
        glucose_metabolism, oxidative_stress, immune_response
    ]).reshape(1, -1)

    # Scale input data
    scaled_data = scaler.transform(input_data)

    # Make prediction
    prediction = model.predict_proba(scaled_data)[0]

    return {
        "No Disease": float(prediction[0]),
        "Disease": float(prediction[1])
    }

# Train model and get scaler
print("Training model and preparing interface...")
model, scaler = train_and_evaluate_model()

# Create Gradio interface
iface = gr.Interface(
    fn=predict_disease,
    inputs=[
        gr.Number(label="BRCA1 Mutation (0 or 1)", value=0),
        gr.Number(label="P53 Variation (typically 0.3-0.7)", value=0.5),
        gr.Number(label="APOE Allele (2, 3, or 4)", value=3),
        gr.Number(label="DNA Methylation (0-1)", value=0.4),
        gr.Number(label="Telomere Length (typically 4000-8000)", value=6000),
        gr.Number(label="CYP2D6 Activity (typically 0-10)", value=4),
        gr.Number(label="Inflammatory Markers (typically 0-10)", value=2),
        gr.Number(label="Glucose Metabolism (typically 70-130)", value=100),
        gr.Number(label="Oxidative Stress (typically 0-10)", value=3),
        gr.Number(label="Immune Response (typically 0.5-0.9)", value=0.7)
    ],
    outputs=gr.Label(label="Disease Prediction"),
    title="Genetic Disease Prediction System",
    description="""This system predicts genetic disease risk based on various genetic markers and biological indicators.
                   Please input values within the suggested ranges for accurate predictions.""",
    examples=[
        # High-risk example
        [1, 0.8, 4, 0.7, 4800, 6, 4, 125, 5, 0.6],
        # Low-risk example
        [0, 0.4, 3, 0.3, 6500, 3, 1, 95, 2, 0.8],
        # Moderate-risk example
        [0, 0.6, 3, 0.5, 5500, 4, 2, 110, 3, 0.7]
    ]
)

# Launch the interface
iface.launch(share=True)