Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from sklearn.preprocessing import StandardScaler
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 7 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 8 |
+
import joblib
|
| 9 |
+
|
| 10 |
+
# Generate more realistic synthetic genetic data
|
| 11 |
+
def generate_realistic_genetic_data(n_samples=1000):
|
| 12 |
+
np.random.seed(42)
|
| 13 |
+
|
| 14 |
+
# Define genetic markers associated with different conditions
|
| 15 |
+
# Marker ranges based on typical genetic variation patterns
|
| 16 |
+
genetic_data = {
|
| 17 |
+
'BRCA1_mutation': np.random.choice([0, 1], size=n_samples, p=[0.95, 0.05]), # BRCA1 mutation
|
| 18 |
+
'P53_variation': np.random.normal(0.5, 0.1, n_samples), # P53 tumor suppressor variation
|
| 19 |
+
'APOE_allele': np.random.choice([2, 3, 4], size=n_samples, p=[0.1, 0.7, 0.2]), # APOE allele types
|
| 20 |
+
'DNA_methylation': np.random.beta(2, 5, n_samples), # DNA methylation levels
|
| 21 |
+
'telomere_length': np.random.normal(6000, 1000, n_samples), # Telomere length
|
| 22 |
+
'CYP2D6_activity': np.random.gamma(2, 2, n_samples), # CYP2D6 enzyme activity
|
| 23 |
+
'inflammatory_markers': np.random.exponential(2, n_samples), # Inflammatory markers
|
| 24 |
+
'glucose_metabolism': np.random.normal(100, 15, n_samples), # Glucose metabolism
|
| 25 |
+
'oxidative_stress': np.random.gamma(3, 1, n_samples), # Oxidative stress levels
|
| 26 |
+
'immune_response': np.random.normal(0.7, 0.1, n_samples) # Immune response strength
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# Create DataFrame
|
| 30 |
+
df = pd.DataFrame(genetic_data)
|
| 31 |
+
|
| 32 |
+
# Generate disease status based on complex interactions
|
| 33 |
+
disease_probability = (
|
| 34 |
+
0.3 * genetic_data['BRCA1_mutation'] +
|
| 35 |
+
0.2 * (genetic_data['P53_variation'] > 0.7) +
|
| 36 |
+
0.15 * (genetic_data['APOE_allele'] == 4) +
|
| 37 |
+
0.1 * (genetic_data['DNA_methylation'] > 0.6) +
|
| 38 |
+
0.05 * (genetic_data['telomere_length'] < 5000) +
|
| 39 |
+
0.1 * (genetic_data['CYP2D6_activity'] > 5) +
|
| 40 |
+
0.05 * (genetic_data['inflammatory_markers'] > 3) +
|
| 41 |
+
0.05 * (genetic_data['glucose_metabolism'] > 120)
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
df['disease'] = (disease_probability > 0.5).astype(int)
|
| 45 |
+
|
| 46 |
+
return df
|
| 47 |
+
|
| 48 |
+
# Data preprocessing
|
| 49 |
+
def preprocess_data(data):
|
| 50 |
+
X = data.drop('disease', axis=1)
|
| 51 |
+
y = data['disease']
|
| 52 |
+
|
| 53 |
+
scaler = StandardScaler()
|
| 54 |
+
X_scaled = scaler.fit_transform(X)
|
| 55 |
+
|
| 56 |
+
return X_scaled, y, scaler
|
| 57 |
+
|
| 58 |
+
# Train and evaluate model
|
| 59 |
+
def train_and_evaluate_model():
|
| 60 |
+
# Generate and preprocess data
|
| 61 |
+
print("Generating synthetic genetic data...")
|
| 62 |
+
data = generate_realistic_genetic_data(1500)
|
| 63 |
+
print("\nData Sample:")
|
| 64 |
+
print(data.head())
|
| 65 |
+
print("\nData Statistics:")
|
| 66 |
+
print(data.describe())
|
| 67 |
+
|
| 68 |
+
# Preprocess data
|
| 69 |
+
X_scaled, y, scaler = preprocess_data(data)
|
| 70 |
+
|
| 71 |
+
# Split data
|
| 72 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 73 |
+
X_scaled, y, test_size=0.2, random_state=42
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Train model
|
| 77 |
+
print("\nTraining Random Forest model...")
|
| 78 |
+
model = RandomForestClassifier(
|
| 79 |
+
n_estimators=100,
|
| 80 |
+
max_depth=5,
|
| 81 |
+
random_state=42
|
| 82 |
+
)
|
| 83 |
+
model.fit(X_train, y_train)
|
| 84 |
+
|
| 85 |
+
# Evaluate model
|
| 86 |
+
y_pred = model.predict(X_test)
|
| 87 |
+
accuracy = accuracy_score(y_test, y_pred)
|
| 88 |
+
print("\nModel Evaluation:")
|
| 89 |
+
print(f"Accuracy: {accuracy:.2f}")
|
| 90 |
+
print("\nClassification Report:")
|
| 91 |
+
print(classification_report(y_test, y_pred))
|
| 92 |
+
|
| 93 |
+
# Feature importance
|
| 94 |
+
feature_importance = pd.DataFrame({
|
| 95 |
+
'feature': data.drop('disease', axis=1).columns,
|
| 96 |
+
'importance': model.feature_importances_
|
| 97 |
+
})
|
| 98 |
+
print("\nFeature Importance:")
|
| 99 |
+
print(feature_importance.sort_values('importance', ascending=False))
|
| 100 |
+
|
| 101 |
+
return model, scaler
|
| 102 |
+
|
| 103 |
+
# Prediction function
|
| 104 |
+
def predict_disease(
|
| 105 |
+
brca1_mutation, p53_variation, apoe_allele, dna_methylation,
|
| 106 |
+
telomere_length, cyp2d6_activity, inflammatory_markers,
|
| 107 |
+
glucose_metabolism, oxidative_stress, immune_response
|
| 108 |
+
):
|
| 109 |
+
# Create input array
|
| 110 |
+
input_data = np.array([
|
| 111 |
+
brca1_mutation, p53_variation, apoe_allele, dna_methylation,
|
| 112 |
+
telomere_length, cyp2d6_activity, inflammatory_markers,
|
| 113 |
+
glucose_metabolism, oxidative_stress, immune_response
|
| 114 |
+
]).reshape(1, -1)
|
| 115 |
+
|
| 116 |
+
# Scale input data
|
| 117 |
+
scaled_data = scaler.transform(input_data)
|
| 118 |
+
|
| 119 |
+
# Make prediction
|
| 120 |
+
prediction = model.predict_proba(scaled_data)[0]
|
| 121 |
+
|
| 122 |
+
return {
|
| 123 |
+
"No Disease": float(prediction[0]),
|
| 124 |
+
"Disease": float(prediction[1])
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
# Train model and get scaler
|
| 128 |
+
print("Training model and preparing interface...")
|
| 129 |
+
model, scaler = train_and_evaluate_model()
|
| 130 |
+
|
| 131 |
+
# Create Gradio interface
|
| 132 |
+
iface = gr.Interface(
|
| 133 |
+
fn=predict_disease,
|
| 134 |
+
inputs=[
|
| 135 |
+
gr.Number(label="BRCA1 Mutation (0 or 1)", value=0),
|
| 136 |
+
gr.Number(label="P53 Variation (typically 0.3-0.7)", value=0.5),
|
| 137 |
+
gr.Number(label="APOE Allele (2, 3, or 4)", value=3),
|
| 138 |
+
gr.Number(label="DNA Methylation (0-1)", value=0.4),
|
| 139 |
+
gr.Number(label="Telomere Length (typically 4000-8000)", value=6000),
|
| 140 |
+
gr.Number(label="CYP2D6 Activity (typically 0-10)", value=4),
|
| 141 |
+
gr.Number(label="Inflammatory Markers (typically 0-10)", value=2),
|
| 142 |
+
gr.Number(label="Glucose Metabolism (typically 70-130)", value=100),
|
| 143 |
+
gr.Number(label="Oxidative Stress (typically 0-10)", value=3),
|
| 144 |
+
gr.Number(label="Immune Response (typically 0.5-0.9)", value=0.7)
|
| 145 |
+
],
|
| 146 |
+
outputs=gr.Label(label="Disease Prediction"),
|
| 147 |
+
title="Genetic Disease Prediction System",
|
| 148 |
+
description="""This system predicts genetic disease risk based on various genetic markers and biological indicators.
|
| 149 |
+
Please input values within the suggested ranges for accurate predictions.""",
|
| 150 |
+
examples=[
|
| 151 |
+
# High-risk example
|
| 152 |
+
[1, 0.8, 4, 0.7, 4800, 6, 4, 125, 5, 0.6],
|
| 153 |
+
# Low-risk example
|
| 154 |
+
[0, 0.4, 3, 0.3, 6500, 3, 1, 95, 2, 0.8],
|
| 155 |
+
# Moderate-risk example
|
| 156 |
+
[0, 0.6, 3, 0.5, 5500, 4, 2, 110, 3, 0.7]
|
| 157 |
+
]
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Launch the interface
|
| 161 |
+
iface.launch(share=True)
|