Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load your model and tokenizer | |
model_name = "Amir230703/phi3-medmcqa-finetuned" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") | |
# Define function for inference | |
def generate_response(prompt): | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
with torch.no_grad(): | |
output = model.generate(input_ids, max_length=200) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |
# Create Gradio UI | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="Medical QA Model", | |
description="Enter a medical question, and the AI will provide an answer." | |
) | |
iface.launch() | |