File size: 819 Bytes
067cc98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load your model and tokenizer
model_name = "Amir230703/phi3-medmcqa-finetuned"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")

# Define function for inference
def generate_response(prompt):
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    with torch.no_grad():
        output = model.generate(input_ids, max_length=200)
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Create Gradio UI
iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="Medical QA Model",
    description="Enter a medical question, and the AI will provide an answer."
)

iface.launch()