Resume-EndPoint / main.py
Alexvatti's picture
Update main.py
7ead369 verified
raw
history blame
6.56 kB
import os
from uuid import uuid4
import uvicorn
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import aiofiles
import PyPDF2
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage
import json
UPLOAD_FOLDER = "uploads"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
app = FastAPI()
# Enable CORS (you can restrict origins later)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
llm = ChatOpenAI(
model_name="gpt-4o-mini", # Use a valid model name like "gpt-4o" or "gpt-4-turbo"
temperature=0,
openai_api_key=os.getenv("OPENAI_API_KEY")
)
# Helper functions
def extract_date(date_str):
if not date_str or "present" in str(date_str).lower():
now = datetime.now()
return {"year": now.year, "month": now.month}
try:
parts = date_str.split()
return {"year": int(parts[1]), "month": convert_month(parts[0])}
except:
return {"year": None, "month": None}
def convert_month(month_str):
months = {
"jan": 1, "feb": 2, "mar": 3, "apr": 4,
"may": 5, "jun": 6, "jul": 7, "aug": 8,
"sep": 9, "oct": 10, "nov": 11, "dec": 12
}
return months.get(month_str.strip().lower()[:3], None)
def calculate_duration(start, end):
s = extract_date(start)
e = extract_date(end)
if s["year"] and e["year"]:
months = (e["year"] - s["year"]) * 12 + (e["month"] - s["month"])
return months if months >= 0 else None
return None
def parse_resume_text(text: str) -> dict:
prompt = f"""
Extract structured information from this resume text and return the result as a JSON object with the following keys:
- basics: {{first_name, last_name, gender, emails, phone_numbers, address, total_experience_in_years, profession, summary, skills, has_driving_license}}
- educations
- professional_experiences
- trainings_and_certifications
- languages
- awards
- references
Resume:
{text}
"""
result = llm([HumanMessage(content=prompt)])
extracted = json.loads(result.content)
# Map the old structure to the new one
basics = extracted.get("basics", {})
educations = extracted.get("educations", [])
professional_experiences = extracted.get("professional_experiences", [])
new_profile = {
"profile": {
"basics": {
"first_name": basics.get("first_name"),
"last_name": basics.get("last_name"),
"gender": basics.get("gender", "male"), # default or infer
"emails": basics.get("emails", []),
"urls": [], # Populate if available
"phone_numbers": basics.get("phone_numbers", []),
"date_of_birth": {"year": None, "month": None, "day": None},
"address": basics.get("address"),
"total_experience_in_years": basics.get("total_experience_in_years", 0),
"profession": basics.get("profession"),
"summary": basics.get("summary"),
"skills": basics.get("skills", []),
"has_driving_license": basics.get("has_driving_license", False),
},
"languages": extracted.get("languages", []),
"educations": [
{
"start_year": None,
"is_current": False,
"end_year": int(e.get("graduation_date", "").split()[-1]) if "graduation_date" in e else None,
"issuing_organization": e.get("institution"),
"description": f"{e.get('degree')}, {e.get('country', '')}".strip()
} for e in educations
],
"trainings_and_certifications": extracted.get("trainings_and_certifications", []),
"professional_experiences": [
{
"start_date": extract_date(p.get("start_date")),
"is_current": p.get("end_date", "").lower() == "present",
"end_date": extract_date(p.get("end_date")),
"duration_in_months": calculate_duration(p.get("start_date"), p.get("end_date")),
"company": p.get("company"),
"location": "Hyderabad", # default or parse if available
"title": p.get("job_title"),
"description": " ".join(p.get("responsibilities", []))
} for p in professional_experiences
],
"awards": extracted.get("awards", []),
"references": extracted.get("references", []),
},
"cv_text": text,
"cv_language": "en"
}
return new_profile
# βœ… Save uploaded file asynchronously
async def save_file(file: UploadFile) -> str:
filename = f"{uuid4()}_{file.filename}"
file_path = os.path.join(UPLOAD_FOLDER, filename)
async with aiofiles.open(file_path, 'wb') as out_file:
content = await file.read()
await out_file.write(content)
return file_path
# βœ… Extract text from PDF using PyPDF2
def extract_text_from_pdf(pdf_path: str) -> str:
text = ""
try:
with open(pdf_path, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text.strip()
except Exception as e:
return f"Error extracting text: {str(e)}"
@app.post("/parse-resume")
async def parse_resume(file: UploadFile = File(...)):
try:
print("πŸ”„ Saving file...")
path = await save_file(file)
print(f"βœ… File saved at {path}")
print("πŸ“„ Extracting text...")
text = extract_text_from_pdf(path)
print("βœ… Text extracted.")
json_result = parse_resume_text(text)
print("βœ… JSON Created.")
os.remove(path)
print("🧹 File removed.")
return json_result
except Exception as e:
import traceback
print("❌ Exception occurred:\n", traceback.format_exc())
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/")
async def root():
return {"message": "Resume PDF Text Extractor is running 🎯"}
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)