File size: 6,564 Bytes
c44fa64
 
3baee5b
c44fa64
 
 
 
 
144401d
 
7ead369
c44fa64
 
3baee5b
 
 
c44fa64
3baee5b
 
 
 
 
 
 
 
5e6aa67
144401d
 
 
 
 
c12aa56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144401d
c12aa56
 
 
 
 
 
 
 
144401d
 
 
7a967fc
144401d
 
 
 
 
 
 
 
 
 
c12aa56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144401d
7a967fc
5e6aa67
 
 
 
 
 
 
 
 
10995ec
5e6aa67
 
 
 
 
 
 
 
 
 
 
 
 
6c0bb7c
 
c44fa64
6c0bb7c
 
 
 
 
 
 
 
144401d
 
 
6c0bb7c
 
 
144401d
6c0bb7c
c44fa64
6c0bb7c
 
 
c44fa64
 
 
 
 
3baee5b
 
c44fa64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
from uuid import uuid4
import uvicorn
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import aiofiles
import PyPDF2
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage
import json
UPLOAD_FOLDER = "uploads"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

app = FastAPI()

# Enable CORS (you can restrict origins later)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


llm = ChatOpenAI(
    model_name="gpt-4o-mini",  # Use a valid model name like "gpt-4o" or "gpt-4-turbo"
    temperature=0,
    openai_api_key=os.getenv("OPENAI_API_KEY")
)
# Helper functions
def extract_date(date_str):
    if not date_str or "present" in str(date_str).lower():
        now = datetime.now()
        return {"year": now.year, "month": now.month}
    try:
        parts = date_str.split()
        return {"year": int(parts[1]), "month": convert_month(parts[0])}
    except:
        return {"year": None, "month": None}

def convert_month(month_str):
    months = {
        "jan": 1, "feb": 2, "mar": 3, "apr": 4,
        "may": 5, "jun": 6, "jul": 7, "aug": 8,
        "sep": 9, "oct": 10, "nov": 11, "dec": 12
    }
    return months.get(month_str.strip().lower()[:3], None)

def calculate_duration(start, end):
    s = extract_date(start)
    e = extract_date(end)
    if s["year"] and e["year"]:
        months = (e["year"] - s["year"]) * 12 + (e["month"] - s["month"])
        return months if months >= 0 else None
    return None
    
def parse_resume_text(text: str) -> dict:
    prompt = f"""
    Extract structured information from this resume text and return the result as a JSON object with the following keys:
    - basics: {{first_name, last_name, gender, emails, phone_numbers, address, total_experience_in_years, profession, summary, skills, has_driving_license}}
    - educations
    - professional_experiences
    - trainings_and_certifications
    - languages
    - awards
    - references
    Resume:
    {text}
    """
    result = llm([HumanMessage(content=prompt)])
    extracted = json.loads(result.content)

    # Map the old structure to the new one
    basics = extracted.get("basics", {})
    educations = extracted.get("educations", [])
    professional_experiences = extracted.get("professional_experiences", [])

    new_profile = {
        "profile": {
            "basics": {
                "first_name": basics.get("first_name"),
                "last_name": basics.get("last_name"),
                "gender": basics.get("gender", "male"),  # default or infer
                "emails": basics.get("emails", []),
                "urls": [],  # Populate if available
                "phone_numbers": basics.get("phone_numbers", []),
                "date_of_birth": {"year": None, "month": None, "day": None},
                "address": basics.get("address"),
                "total_experience_in_years": basics.get("total_experience_in_years", 0),
                "profession": basics.get("profession"),
                "summary": basics.get("summary"),
                "skills": basics.get("skills", []),
                "has_driving_license": basics.get("has_driving_license", False),
            },
            "languages": extracted.get("languages", []),
            "educations": [
                {
                    "start_year": None,
                    "is_current": False,
                    "end_year": int(e.get("graduation_date", "").split()[-1]) if "graduation_date" in e else None,
                    "issuing_organization": e.get("institution"),
                    "description": f"{e.get('degree')}, {e.get('country', '')}".strip()
                } for e in educations
            ],
            "trainings_and_certifications": extracted.get("trainings_and_certifications", []),
            "professional_experiences": [
                {
                    "start_date": extract_date(p.get("start_date")),
                    "is_current": p.get("end_date", "").lower() == "present",
                    "end_date": extract_date(p.get("end_date")),
                    "duration_in_months": calculate_duration(p.get("start_date"), p.get("end_date")),
                    "company": p.get("company"),
                    "location": "Hyderabad",  # default or parse if available
                    "title": p.get("job_title"),
                    "description": " ".join(p.get("responsibilities", []))
                } for p in professional_experiences
            ],
            "awards": extracted.get("awards", []),
            "references": extracted.get("references", []),
        },
        "cv_text": text,
        "cv_language": "en"
    }

    return new_profile


# βœ… Save uploaded file asynchronously
async def save_file(file: UploadFile) -> str:
    filename = f"{uuid4()}_{file.filename}"
    file_path = os.path.join(UPLOAD_FOLDER, filename)
    async with aiofiles.open(file_path, 'wb') as out_file:
        content = await file.read()
        await out_file.write(content)
    return file_path

# βœ… Extract text from PDF using PyPDF2
def extract_text_from_pdf(pdf_path: str) -> str:
    text = ""
    try:
        with open(pdf_path, "rb") as file:
            pdf_reader = PyPDF2.PdfReader(file)
            for page in pdf_reader.pages:
                page_text = page.extract_text()
                if page_text:
                    text += page_text + "\n"
        return text.strip()
    except Exception as e:
        return f"Error extracting text: {str(e)}"
        
@app.post("/parse-resume")
async def parse_resume(file: UploadFile = File(...)):
    try:
        print("πŸ”„ Saving file...")
        path = await save_file(file)
        print(f"βœ… File saved at {path}")

        print("πŸ“„ Extracting text...")
        text = extract_text_from_pdf(path)
        print("βœ… Text extracted.")

        json_result = parse_resume_text(text)
        print("βœ… JSON Created.")
        
        os.remove(path)
        print("🧹 File removed.")

        return json_result
    
    except Exception as e:
        import traceback
        print("❌ Exception occurred:\n", traceback.format_exc())
        return JSONResponse(status_code=500, content={"error": str(e)})


@app.get("/")
async def root():
    return {"message": "Resume PDF Text Extractor is running 🎯"}

if __name__ == "__main__":
    uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)