Spaces:
Runtime error
Runtime error
Create util.py
Browse files
util.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import functools
|
| 4 |
+
import numpy as np
|
| 5 |
+
from math import cos, pi, floor, sin
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
from stft_loss import MultiResolutionSTFTLoss
|
| 13 |
+
|
| 14 |
+
torch.manual_seed(0)
|
| 15 |
+
np.random.seed(0)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def flatten(v):
|
| 19 |
+
return [x for y in v for x in y]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def rescale(x):
|
| 23 |
+
return (x - x.min()) / (x.max() - x.min())
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def find_max_epoch(path):
|
| 27 |
+
"""
|
| 28 |
+
Find latest checkpoint
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
maximum iteration, -1 if there is no (valid) checkpoint
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
files = os.listdir(path)
|
| 35 |
+
epoch = -1
|
| 36 |
+
for f in files:
|
| 37 |
+
if len(f) <= 4:
|
| 38 |
+
continue
|
| 39 |
+
if f[-4:] == '.pkl':
|
| 40 |
+
number = f[:-4]
|
| 41 |
+
try:
|
| 42 |
+
epoch = max(epoch, int(number))
|
| 43 |
+
except:
|
| 44 |
+
continue
|
| 45 |
+
return epoch
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def print_size(net, keyword=None):
|
| 49 |
+
"""
|
| 50 |
+
Print the number of parameters of a network
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
if net is not None and isinstance(net, torch.nn.Module):
|
| 54 |
+
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
|
| 55 |
+
params = sum([np.prod(p.size()) for p in module_parameters])
|
| 56 |
+
|
| 57 |
+
print("{} Parameters: {:.6f}M".format(
|
| 58 |
+
net.__class__.__name__, params / 1e6), flush=True, end="; ")
|
| 59 |
+
|
| 60 |
+
if keyword is not None:
|
| 61 |
+
keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name]
|
| 62 |
+
params = sum([np.prod(p.size()) for p in keyword_parameters])
|
| 63 |
+
print("{} Parameters: {:.6f}M".format(
|
| 64 |
+
keyword, params / 1e6), flush=True, end="; ")
|
| 65 |
+
|
| 66 |
+
print(" ")
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
####################### lr scheduler: Linear Warmup then Cosine Decay #############################
|
| 70 |
+
|
| 71 |
+
# Adapted from https://github.com/rosinality/vq-vae-2-pytorch
|
| 72 |
+
|
| 73 |
+
# Original Copyright 2019 Kim Seonghyeon
|
| 74 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def anneal_linear(start, end, proportion):
|
| 78 |
+
return start + proportion * (end - start)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def anneal_cosine(start, end, proportion):
|
| 82 |
+
cos_val = cos(pi * proportion) + 1
|
| 83 |
+
return end + (start - end) / 2 * cos_val
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class Phase:
|
| 87 |
+
def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
|
| 88 |
+
self.start, self.end = start, end
|
| 89 |
+
self.n_iter = n_iter
|
| 90 |
+
self.anneal_fn = anneal_fn
|
| 91 |
+
self.n = cur_iter
|
| 92 |
+
|
| 93 |
+
def step(self):
|
| 94 |
+
self.n += 1
|
| 95 |
+
|
| 96 |
+
return self.anneal_fn(self.start, self.end, self.n / self.n_iter)
|
| 97 |
+
|
| 98 |
+
def reset(self):
|
| 99 |
+
self.n = 0
|
| 100 |
+
|
| 101 |
+
@property
|
| 102 |
+
def is_done(self):
|
| 103 |
+
return self.n >= self.n_iter
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class LinearWarmupCosineDecay:
|
| 107 |
+
def __init__(
|
| 108 |
+
self,
|
| 109 |
+
optimizer,
|
| 110 |
+
lr_max,
|
| 111 |
+
n_iter,
|
| 112 |
+
iteration=0,
|
| 113 |
+
divider=25,
|
| 114 |
+
warmup_proportion=0.3,
|
| 115 |
+
phase=('linear', 'cosine'),
|
| 116 |
+
):
|
| 117 |
+
self.optimizer = optimizer
|
| 118 |
+
|
| 119 |
+
phase1 = int(n_iter * warmup_proportion)
|
| 120 |
+
phase2 = n_iter - phase1
|
| 121 |
+
lr_min = lr_max / divider
|
| 122 |
+
|
| 123 |
+
phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}
|
| 124 |
+
|
| 125 |
+
cur_iter_phase1 = iteration
|
| 126 |
+
cur_iter_phase2 = max(0, iteration - phase1)
|
| 127 |
+
self.lr_phase = [
|
| 128 |
+
Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
|
| 129 |
+
Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
|
| 130 |
+
]
|
| 131 |
+
|
| 132 |
+
if iteration < phase1:
|
| 133 |
+
self.phase = 0
|
| 134 |
+
else:
|
| 135 |
+
self.phase = 1
|
| 136 |
+
|
| 137 |
+
def step(self):
|
| 138 |
+
lr = self.lr_phase[self.phase].step()
|
| 139 |
+
|
| 140 |
+
for group in self.optimizer.param_groups:
|
| 141 |
+
group['lr'] = lr
|
| 142 |
+
|
| 143 |
+
if self.lr_phase[self.phase].is_done:
|
| 144 |
+
self.phase += 1
|
| 145 |
+
|
| 146 |
+
if self.phase >= len(self.lr_phase):
|
| 147 |
+
for phase in self.lr_phase:
|
| 148 |
+
phase.reset()
|
| 149 |
+
|
| 150 |
+
self.phase = 0
|
| 151 |
+
|
| 152 |
+
return lr
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
####################### model util #############################
|
| 156 |
+
|
| 157 |
+
def std_normal(size):
|
| 158 |
+
"""
|
| 159 |
+
Generate the standard Gaussian variable of a certain size
|
| 160 |
+
"""
|
| 161 |
+
|
| 162 |
+
return torch.normal(0, 1, size=size).cuda()
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def weight_scaling_init(layer):
|
| 166 |
+
"""
|
| 167 |
+
weight rescaling initialization from https://arxiv.org/abs/1911.13254
|
| 168 |
+
"""
|
| 169 |
+
w = layer.weight.detach()
|
| 170 |
+
alpha = 10.0 * w.std()
|
| 171 |
+
layer.weight.data /= torch.sqrt(alpha)
|
| 172 |
+
layer.bias.data /= torch.sqrt(alpha)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
@torch.no_grad()
|
| 176 |
+
def sampling(net, noisy_audio):
|
| 177 |
+
"""
|
| 178 |
+
Perform denoising (forward) step
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
return net(noisy_audio)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs):
|
| 185 |
+
"""
|
| 186 |
+
Loss function in CleanUNet
|
| 187 |
+
Parameters:
|
| 188 |
+
net: network
|
| 189 |
+
X: training data pair (clean audio, noisy_audio)
|
| 190 |
+
ell_p: \ell_p norm (1 or 2) of the AE loss
|
| 191 |
+
ell_p_lambda: factor of the AE loss
|
| 192 |
+
stft_lambda: factor of the STFT loss
|
| 193 |
+
mrstftloss: multi-resolution STFT loss function
|
| 194 |
+
Returns:
|
| 195 |
+
loss: value of objective function
|
| 196 |
+
output_dic: values of each component of loss
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
assert type(X) == tuple and len(X) == 2
|
| 200 |
+
|
| 201 |
+
clean_audio, noisy_audio = X
|
| 202 |
+
B, C, L = clean_audio.shape
|
| 203 |
+
output_dic = {}
|
| 204 |
+
loss = 0.0
|
| 205 |
+
|
| 206 |
+
# AE loss
|
| 207 |
+
denoised_audio = net(noisy_audio)
|
| 208 |
+
|
| 209 |
+
if ell_p == 2:
|
| 210 |
+
ae_loss = nn.MSELoss()(denoised_audio, clean_audio)
|
| 211 |
+
elif ell_p == 1:
|
| 212 |
+
ae_loss = F.l1_loss(denoised_audio, clean_audio)
|
| 213 |
+
else:
|
| 214 |
+
raise NotImplementedError
|
| 215 |
+
loss += ae_loss * ell_p_lambda
|
| 216 |
+
output_dic["reconstruct"] = ae_loss.data * ell_p_lambda
|
| 217 |
+
|
| 218 |
+
if stft_lambda > 0:
|
| 219 |
+
sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1))
|
| 220 |
+
loss += (sc_loss + mag_loss) * stft_lambda
|
| 221 |
+
output_dic["stft_sc"] = sc_loss.data * stft_lambda
|
| 222 |
+
output_dic["stft_mag"] = mag_loss.data * stft_lambda
|
| 223 |
+
|
| 224 |
+
return loss, output_dic
|
| 225 |
+
|