Spaces:
Runtime error
Runtime error
Create stft_loss.py
Browse files- stft_loss.py +174 -0
stft_loss.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/kan-bayashi/ParallelWaveGAN
|
| 2 |
+
|
| 3 |
+
# Original Copyright 2019 Tomoki Hayashi
|
| 4 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
| 5 |
+
|
| 6 |
+
"""STFT-based Loss modules."""
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
from distutils.version import LooseVersion
|
| 12 |
+
|
| 13 |
+
is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion("1.7")
|
| 14 |
+
|
| 15 |
+
torch.manual_seed(0)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def stft(x, fft_size, hop_size, win_length, window):
|
| 19 |
+
"""Perform STFT and convert to magnitude spectrogram.
|
| 20 |
+
Args:
|
| 21 |
+
x (Tensor): Input signal tensor (B, T).
|
| 22 |
+
fft_size (int): FFT size.
|
| 23 |
+
hop_size (int): Hop size.
|
| 24 |
+
win_length (int): Window length.
|
| 25 |
+
window (str): Window function type.
|
| 26 |
+
Returns:
|
| 27 |
+
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
| 28 |
+
"""
|
| 29 |
+
if is_pytorch_17plus:
|
| 30 |
+
x_stft = torch.stft(
|
| 31 |
+
x, fft_size, hop_size, win_length, window, return_complex=False
|
| 32 |
+
)
|
| 33 |
+
else:
|
| 34 |
+
x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
|
| 35 |
+
real = x_stft[..., 0]
|
| 36 |
+
imag = x_stft[..., 1]
|
| 37 |
+
|
| 38 |
+
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
| 39 |
+
return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class SpectralConvergenceLoss(torch.nn.Module):
|
| 43 |
+
"""Spectral convergence loss module."""
|
| 44 |
+
|
| 45 |
+
def __init__(self):
|
| 46 |
+
"""Initilize spectral convergence loss module."""
|
| 47 |
+
super(SpectralConvergenceLoss, self).__init__()
|
| 48 |
+
|
| 49 |
+
def forward(self, x_mag, y_mag):
|
| 50 |
+
"""Calculate forward propagation.
|
| 51 |
+
Args:
|
| 52 |
+
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
| 53 |
+
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
Tensor: Spectral convergence loss value.
|
| 57 |
+
|
| 58 |
+
"""
|
| 59 |
+
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class LogSTFTMagnitudeLoss(torch.nn.Module):
|
| 63 |
+
"""Log STFT magnitude loss module."""
|
| 64 |
+
|
| 65 |
+
def __init__(self):
|
| 66 |
+
"""Initilize los STFT magnitude loss module."""
|
| 67 |
+
super(LogSTFTMagnitudeLoss, self).__init__()
|
| 68 |
+
|
| 69 |
+
def forward(self, x_mag, y_mag):
|
| 70 |
+
"""Calculate forward propagation.
|
| 71 |
+
Args:
|
| 72 |
+
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
| 73 |
+
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
Tensor: Log STFT magnitude loss value.
|
| 77 |
+
"""
|
| 78 |
+
return F.l1_loss(torch.log(y_mag), torch.log(x_mag))
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class STFTLoss(torch.nn.Module):
|
| 82 |
+
"""STFT loss module."""
|
| 83 |
+
|
| 84 |
+
def __init__(
|
| 85 |
+
self, fft_size=1024, shift_size=120, win_length=600, window="hann_window",
|
| 86 |
+
band="full"
|
| 87 |
+
):
|
| 88 |
+
"""Initialize STFT loss module."""
|
| 89 |
+
super(STFTLoss, self).__init__()
|
| 90 |
+
self.fft_size = fft_size
|
| 91 |
+
self.shift_size = shift_size
|
| 92 |
+
self.win_length = win_length
|
| 93 |
+
self.band = band
|
| 94 |
+
|
| 95 |
+
self.spectral_convergence_loss = SpectralConvergenceLoss()
|
| 96 |
+
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
| 97 |
+
# NOTE(kan-bayashi): Use register_buffer to fix #223
|
| 98 |
+
self.register_buffer("window", getattr(torch, window)(win_length))
|
| 99 |
+
|
| 100 |
+
def forward(self, x, y):
|
| 101 |
+
"""Calculate forward propagation.
|
| 102 |
+
Args:
|
| 103 |
+
x (Tensor): Predicted signal (B, T).
|
| 104 |
+
y (Tensor): Groundtruth signal (B, T).
|
| 105 |
+
Returns:
|
| 106 |
+
Tensor: Spectral convergence loss value.
|
| 107 |
+
Tensor: Log STFT magnitude loss value.
|
| 108 |
+
"""
|
| 109 |
+
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window)
|
| 110 |
+
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window)
|
| 111 |
+
|
| 112 |
+
if self.band == "high":
|
| 113 |
+
freq_mask_ind = x_mag.shape[1] // 2 # only select high frequency bands
|
| 114 |
+
sc_loss = self.spectral_convergence_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
|
| 115 |
+
mag_loss = self.log_stft_magnitude_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
|
| 116 |
+
elif self.band == "full":
|
| 117 |
+
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
|
| 118 |
+
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
| 119 |
+
else:
|
| 120 |
+
raise NotImplementedError
|
| 121 |
+
|
| 122 |
+
return sc_loss, mag_loss
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class MultiResolutionSTFTLoss(torch.nn.Module):
|
| 126 |
+
"""Multi resolution STFT loss module."""
|
| 127 |
+
|
| 128 |
+
def __init__(
|
| 129 |
+
self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240],
|
| 130 |
+
window="hann_window", sc_lambda=0.1, mag_lambda=0.1, band="full"
|
| 131 |
+
):
|
| 132 |
+
"""Initialize Multi resolution STFT loss module.
|
| 133 |
+
Args:
|
| 134 |
+
fft_sizes (list): List of FFT sizes.
|
| 135 |
+
hop_sizes (list): List of hop sizes.
|
| 136 |
+
win_lengths (list): List of window lengths.
|
| 137 |
+
window (str): Window function type.
|
| 138 |
+
*_lambda (float): a balancing factor across different losses.
|
| 139 |
+
band (str): high-band or full-band loss
|
| 140 |
+
"""
|
| 141 |
+
super(MultiResolutionSTFTLoss, self).__init__()
|
| 142 |
+
self.sc_lambda = sc_lambda
|
| 143 |
+
self.mag_lambda = mag_lambda
|
| 144 |
+
|
| 145 |
+
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
| 146 |
+
self.stft_losses = torch.nn.ModuleList()
|
| 147 |
+
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
| 148 |
+
self.stft_losses += [STFTLoss(fs, ss, wl, window, band)]
|
| 149 |
+
|
| 150 |
+
def forward(self, x, y):
|
| 151 |
+
"""Calculate forward propagation.
|
| 152 |
+
Args:
|
| 153 |
+
x (Tensor): Predicted signal (B, T) or (B, #subband, T).
|
| 154 |
+
y (Tensor): Groundtruth signal (B, T) or (B, #subband, T).
|
| 155 |
+
Returns:
|
| 156 |
+
Tensor: Multi resolution spectral convergence loss value.
|
| 157 |
+
Tensor: Multi resolution log STFT magnitude loss value.
|
| 158 |
+
"""
|
| 159 |
+
if len(x.shape) == 3:
|
| 160 |
+
x = x.view(-1, x.size(2)) # (B, C, T) -> (B x C, T)
|
| 161 |
+
y = y.view(-1, y.size(2)) # (B, C, T) -> (B x C, T)
|
| 162 |
+
sc_loss = 0.0
|
| 163 |
+
mag_loss = 0.0
|
| 164 |
+
for f in self.stft_losses:
|
| 165 |
+
sc_l, mag_l = f(x, y)
|
| 166 |
+
sc_loss += sc_l
|
| 167 |
+
mag_loss += mag_l
|
| 168 |
+
|
| 169 |
+
sc_loss *= self.sc_lambda
|
| 170 |
+
sc_loss /= len(self.stft_losses)
|
| 171 |
+
mag_loss *= self.mag_lambda
|
| 172 |
+
mag_loss /= len(self.stft_losses)
|
| 173 |
+
|
| 174 |
+
return sc_loss, mag_loss
|