Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load GPT-2 model and tokenizer | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
model = AutoModelForCausalLM.from_pretrained("gpt2") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
st.title("Blog Post Generator") | |
st.write("Generate a blog post for a given topic using GPT-2.") | |
# User input for the blog post topic | |
topic = st.text_input("Enter the topic for your blog post:") | |
# Generate blog post button | |
if st.button("Generate Blog Post"): | |
if topic: | |
# Prepare the input for the model | |
input_text = f"Write a blog post about {topic}." | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
# Generate the blog post using GPT-2 | |
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True) | |
# Decode the generated text | |
blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.write("### Generated Blog Post:") | |
st.write(blog_post) | |
else: | |
st.write("Please enter a topic to generate a blog post.") | |