Spaces:
Sleeping
Sleeping
File size: 1,244 Bytes
f2c8d49 c8654e4 f2c8d49 338b4ff c8654e4 338b4ff c8654e4 338b4ff c8654e4 338b4ff c8654e4 338b4ff f2c8d49 c8654e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load GPT-2 model and tokenizer
@st.cache(allow_output_mutation=True)
def load_model():
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
return tokenizer, model
tokenizer, model = load_model()
st.title("Blog Post Generator")
st.write("Generate a blog post for a given topic using GPT-2.")
# User input for the blog post topic
topic = st.text_input("Enter the topic for your blog post:")
# Generate blog post button
if st.button("Generate Blog Post"):
if topic:
# Prepare the input for the model
input_text = f"Write a blog post about {topic}."
inputs = tokenizer.encode(input_text, return_tensors="pt")
# Generate the blog post using GPT-2
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True)
# Decode the generated text
blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write("### Generated Blog Post:")
st.write(blog_post)
else:
st.write("Please enter a topic to generate a blog post.")
|