podcastify / app.py
eswardivi's picture
Update app.py
d36574f verified
import os
import re
import httpx
import json
from typing import List, Tuple, Dict
from dataclasses import dataclass
import gradio as gr
import base64
from mistralai import Mistral
from scrapling.fetchers import Fetcher
from newspaper import Article
from trafilatura import extract
import wave
import time
import asyncio
import uuid
api_key = os.environ["MISTRAL_API_KEY"]
client = Mistral(api_key=api_key)
def get_text_from_document(document_url: str) -> str:
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={"type": "document_url", "document_url": document_url},
include_image_base64=False,
)
pages_text = []
for page_number, page in enumerate(ocr_response.pages, start=1):
page_content = f"--- Page {page_number} ---\n{page.markdown}\n\n"
pages_text.append(page_content)
final_text = "".join(pages_text)
return final_text
def get_text_from_link(link: str) -> str:
try:
page = Fetcher.get(link, stealthy_headers=True, follow_redirects=True)
content = extract(page.html_content, with_metadata=True)
if content:
return content
except Exception as e:
print(f"Trafilatura extraction failed for {link}: {str(e)}")
try:
article = Article(link)
article.download()
article.parse()
metadata_text = f"#Title: {article.title}\n"
if article.authors:
metadata_text += f"Authors: {', '.join(article.authors)}\n"
if article.publish_date:
metadata_text += f"Published: {article.publish_date}\n"
if article.keywords:
metadata_text += f"Keywords: {', '.join(article.keywords)}\n"
if article.summary:
metadata_text += f"Summary: {article.summary}\n\n"
return metadata_text + article.text
except Exception as e:
print(f"Newspaper extraction failed for {link}: {str(e)}")
return None
def just_text(text: str) -> str:
if not text:
raise ValueError("Input text cannot be empty")
return text
def build_prompt(text: str) -> str:
template = """{
"conversation": [
{"speaker": "Olivia", "text": ""},
{"speaker": "Brian", "text": ""}
]
}"""
prompt = """
Turn the text above into a casual podcast conversation between two hosts.
- Use a relaxed, informal tone like you're chatting with a friend
- Include natural conversation fillers like 'you know', 'I mean', 'like'
- Feel free to go off on brief relevant tangents or share quick personal takes
- Keep the back-and-forth flowing naturally
- Cover the key points but maintain a conversational style
- Aim for about 1 minute of casual discussion.
Output in this JSON format:"""
return f"{text}\n{prompt}\n{template}"
def extract_conversation(text: str) -> Dict:
prompt = build_prompt(text)
max_retries = 3
attempt = 0
while attempt < max_retries:
try:
chat_completion = client.chat.complete(
model="codestral-latest",
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": prompt,
},
],
response_format={
"type": "json_object",
},
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
result = json.loads(json_match.group())
if "conversation" not in result:
if attempt == max_retries - 1:
raise ValueError(
"Response JSON missing 'conversation' key after all retries"
)
attempt += 1
continue
return result
except Exception as e:
if attempt == max_retries - 1:
raise RuntimeError(
f"Failed to extract conversation after {max_retries} attempts: {e}"
)
attempt += 1
async def generate_audio(text: str, voice: str, file_out_path: str) -> str:
url = "https://eswardivi--kokoro-api-kokoro-generate.modal.run/"
querystring = {"text": text, "voice": voice}
payload = ""
headers = {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate, br",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36",
"Connection": "keep-alive",
}
async with httpx.AsyncClient() as client:
response = await client.post(
url, headers=headers, params=querystring, data=payload, timeout=90.0
)
audio_data = response.content
with open(file_out_path, "wb") as f:
f.write(audio_data)
return file_out_path
def merge_audio_files(audio_files: List[str]) -> str:
random_name = str(uuid.uuid4())
merged_file = f"{random_name}.wav"
with wave.open(audio_files[0], "rb") as first_wav:
params = first_wav.getparams()
merged_audio = wave.open(merged_file, "wb")
merged_audio.setparams(params)
for audio_file in audio_files:
with wave.open(audio_file, "rb") as wav_file:
merged_audio.writeframes(wav_file.readframes(wav_file.getnframes()))
os.remove(audio_file)
merged_audio.close()
return merged_file
async def wake_up_api():
url = "https://eswardivi--kokoro-api-kokoro-wake-up.modal.run/"
async with httpx.AsyncClient() as client:
response = await client.get(url, timeout=90.0)
if response.status_code == 200:
print("API is awake")
else:
print("API is not awake Yet")
def generate_podcast(input_type: str, input: str):
"""
Generate a podcast-style conversation from various input types.
This function takes content from a document URL, webpage link, or raw text and
converts it into a natural-sounding podcast dialogue between two hosts. The conversation
is then synthesized into audio using text-to-speech.
Args:
input_type (str): The type of input to process. Must be one of:
- "Document": URL to a document (PDF, etc.) to extract text from
- "Link": URL to a webpage to scrape content from
- "Text": Raw text input to convert directly
input (str): The actual input content matching the specified input_type:
- For "Document": Document or arxiv URL (e.g. "https://example.com/doc.pdf")
- For "Link": Webpage URL (e.g. "https://example.com/article")
- For "Text": Plain text content
Returns:
str: Path to the generated audio file (.wav format) containing the synthesized
podcast conversation.
Raises:
ValueError: If the input text cannot be extracted or is empty
RuntimeError: If conversation extraction fails after maximum retries
"""
async def async_process():
await wake_up_api()
start_time = time.time()
if input_type == "Document":
text = get_text_from_document(input)
elif input_type == "Link":
text = get_text_from_link(input)
elif input_type == "Text":
text = input
if not text:
raise ValueError("Input text cannot be empty")
text_time = time.time()
print(f"Text Extracted ({text_time - start_time:.2f}s)")
conversation = extract_conversation(text)
conversation_time = time.time()
print(f"Conversation Extracted ({conversation_time - text_time:.2f}s)")
batch_size = 8
tasks = []
for i in range(0, len(conversation["conversation"]), batch_size):
batch = conversation["conversation"][i : i + batch_size]
batch_tasks = []
for j, message in enumerate(batch, start=i):
if message["speaker"] == "Olivia":
voice = "af_heart"
elif message["speaker"] == "Brian":
voice = "am_fenrir"
else:
voice = "am_fenrir"
batch_tasks.append(
generate_audio(message["text"], voice, f"output_{j}.mp3")
)
tasks.extend(await asyncio.gather(*batch_tasks))
audio_time = time.time()
print(f"Audio Generated ({audio_time - conversation_time:.2f}s)")
audio_files = [
f"output_{index}.mp3" for index in range(len(conversation["conversation"]))
]
files_time = time.time()
print(f"Audio Files Listed ({files_time - audio_time:.2f}s)")
merged_audio = merge_audio_files(audio_files)
merge_time = time.time()
print(f"Merged Audio Generated ({merge_time - files_time:.2f}s)")
print(f"Total Time: {merge_time - start_time:.2f}s")
return merged_audio
return asyncio.run(async_process())
with gr.Blocks(title="Podcast Generator") as demo:
gr.Markdown(
"""
# πŸŽ™οΈ Podcast Generator
Generate engaging podcast conversations from documents, links, or text input.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_type = gr.Dropdown(
choices=["Document", "Link", "Text"],
label="Input Type",
value="Document",
interactive=True,
)
input_text = gr.Textbox(
label="Input", placeholder="Enter Document URL, Link or Text", lines=5
)
generate_btn = gr.Button("Generate Podcast 🎧", variant="primary")
with gr.Column(scale=1):
output_audio = gr.Audio(label="Generated Podcast")
generate_btn.click(
fn=generate_podcast,
inputs=[input_type, input_text],
outputs=output_audio,
api_name="generate",
)
demo.launch(mcp_server=True)