Spaces:
Runtime error
Runtime error
oof...
Browse files
app.py
CHANGED
|
@@ -122,7 +122,7 @@ register_model_with_metadata(
|
|
| 122 |
)
|
| 123 |
|
| 124 |
# --- ONNX Quantized Model Example ---
|
| 125 |
-
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
|
| 126 |
|
| 127 |
def preprocess_onnx_input(image: Image.Image):
|
| 128 |
# Preprocess image for ONNX model (e.g., for SwinV2, usually 256x256, normalized)
|
|
@@ -423,11 +423,11 @@ def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, shar
|
|
| 423 |
gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
|
| 424 |
minmax_image = minmax_process(img_np_og)
|
| 425 |
minmax_image2 = minmax_process(img_np_og, radius=6)
|
| 426 |
-
bitplane_image = bit_plane_extractor(img_pil)
|
| 427 |
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
|
| 428 |
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
|
| 429 |
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
|
| 430 |
-
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2
|
| 431 |
forensic_output_descriptions = [
|
| 432 |
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
|
| 433 |
"ELA analysis (Pass 1): Grayscale error map, quality 75.",
|
|
@@ -437,7 +437,7 @@ def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, shar
|
|
| 437 |
"Gradient processing: Int=45, Equalize=True",
|
| 438 |
"MinMax processing: Deviations in local pixel values.",
|
| 439 |
"MinMax processing (Radius=6): Deviations in local pixel values.",
|
| 440 |
-
"Bit Plane extractor: Visualization of individual bit planes from different color channels."
|
| 441 |
]
|
| 442 |
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
|
| 443 |
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
|
|
@@ -554,7 +554,7 @@ def predict(img):
|
|
| 554 |
handle_file(img),
|
| 555 |
api_name="/simple_predict"
|
| 556 |
)
|
| 557 |
-
return result
|
| 558 |
community_forensics_preview = gr.Interface(
|
| 559 |
fn=predict,
|
| 560 |
inputs=gr.Image(type="filepath"),
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
# --- ONNX Quantized Model Example ---
|
| 125 |
+
ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
|
| 126 |
|
| 127 |
def preprocess_onnx_input(image: Image.Image):
|
| 128 |
# Preprocess image for ONNX model (e.g., for SwinV2, usually 256x256, normalized)
|
|
|
|
| 423 |
gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
|
| 424 |
minmax_image = minmax_process(img_np_og)
|
| 425 |
minmax_image2 = minmax_process(img_np_og, radius=6)
|
| 426 |
+
# bitplane_image = bit_plane_extractor(img_pil)
|
| 427 |
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
|
| 428 |
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
|
| 429 |
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
|
| 430 |
+
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2]
|
| 431 |
forensic_output_descriptions = [
|
| 432 |
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
|
| 433 |
"ELA analysis (Pass 1): Grayscale error map, quality 75.",
|
|
|
|
| 437 |
"Gradient processing: Int=45, Equalize=True",
|
| 438 |
"MinMax processing: Deviations in local pixel values.",
|
| 439 |
"MinMax processing (Radius=6): Deviations in local pixel values.",
|
| 440 |
+
# "Bit Plane extractor: Visualization of individual bit planes from different color channels."
|
| 441 |
]
|
| 442 |
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
|
| 443 |
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
|
|
|
|
| 554 |
handle_file(img),
|
| 555 |
api_name="/simple_predict"
|
| 556 |
)
|
| 557 |
+
return str(result)
|
| 558 |
community_forensics_preview = gr.Interface(
|
| 559 |
fn=predict,
|
| 560 |
inputs=gr.Image(type="filepath"),
|