Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForImageClassification, pipeline, AutoImageProcessor
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
|
| 5 |
+
model = AutoModelForImageClassification.from_pretrained("Nicole-M/Dataset1-SwinV2")
|
| 6 |
+
image_processor = AutoImageProcessor.from_pretrained("Nicole-M/Dataset1-SwinV2")
|
| 7 |
+
clf = pipeline(model=model, task="image-classification", image_processor=image_processor)
|
| 8 |
+
|
| 9 |
+
class_names = ['Benign', 'Malignant']
|
| 10 |
+
|
| 11 |
+
def predict_image(img):
|
| 12 |
+
img = transforms.ToPILImage()(img)
|
| 13 |
+
img = transforms.Resize((224,224))(img)
|
| 14 |
+
prediction=clf.predict(img)
|
| 15 |
+
return {class_names[i]: float(prediction[i]["score"]) for i in range(2)}
|
| 16 |
+
|
| 17 |
+
image = gr.Image(label="Select a mammogram image", sources=['upload'])
|
| 18 |
+
label = gr.Label(num_top_classes=2)
|
| 19 |
+
|
| 20 |
+
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="Mammogram classification").launch()
|