Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,8 +17,17 @@ clf = pipeline(model=model, task="image-classification", image_processor=image_p
|
|
| 17 |
class_names = ['artificial', 'real']
|
| 18 |
|
| 19 |
def predict_image(img, confidence_threshold):
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
| 23 |
|
| 24 |
# Get the prediction
|
|
@@ -39,7 +48,7 @@ def predict_image(img, confidence_threshold):
|
|
| 39 |
return f"Label: real, Confidence: {result['real']:.4f}"
|
| 40 |
else:
|
| 41 |
return "Uncertain Classification"
|
| 42 |
-
|
| 43 |
# Define the Gradio interface
|
| 44 |
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL
|
| 45 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
|
|
|
| 17 |
class_names = ['artificial', 'real']
|
| 18 |
|
| 19 |
def predict_image(img, confidence_threshold):
|
| 20 |
+
print(f"Type of img: {type(img)}") # Debugging statement
|
| 21 |
+
if not isinstance(img, Image.Image):
|
| 22 |
+
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
| 23 |
+
|
| 24 |
+
# Convert the image to RGB if not already
|
| 25 |
+
if img.mode != 'RGB':
|
| 26 |
+
img_pil = img.convert('RGB')
|
| 27 |
+
else:
|
| 28 |
+
img_pil = img
|
| 29 |
+
|
| 30 |
+
# Resize the image
|
| 31 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
| 32 |
|
| 33 |
# Get the prediction
|
|
|
|
| 48 |
return f"Label: real, Confidence: {result['real']:.4f}"
|
| 49 |
else:
|
| 50 |
return "Uncertain Classification"
|
| 51 |
+
|
| 52 |
# Define the Gradio interface
|
| 53 |
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL
|
| 54 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|