agharsallah commited on
Commit
d82e593
·
1 Parent(s): 682ed52
.env.example CHANGED
@@ -18,4 +18,7 @@ MCP_SERVER_URL="your-mcp-server-url-here"
18
  #Used to test mcp function calling
19
  OPENAI_API_KEY="your-openai-api-key-here"
20
  #Used to Parse the PDFs for story enrichment
21
- LLAMA_CLOUD_API_KEY="your-llama-cloud-api-key-here"
 
 
 
 
18
  #Used to test mcp function calling
19
  OPENAI_API_KEY="your-openai-api-key-here"
20
  #Used to Parse the PDFs for story enrichment
21
+ LLAMA_CLOUD_API_KEY="your-llama-cloud-api-key-here"
22
+
23
+ # Used for 3D mesh generation
24
+ THREE_D_API_URL="your-3d-api-url-here"
app.py CHANGED
@@ -26,6 +26,7 @@ from ui.components import (
26
  create_chapter_navigation,
27
  create_chapter_accordion,
28
  create_story_melody_section,
 
29
  )
30
  from ui.mcp_components import letter_counter_component
31
  from controllers.app_controller import (
@@ -34,7 +35,6 @@ from controllers.app_controller import (
34
  )
35
  from ui.events import setup_event_handlers
36
 
37
-
38
  # Configure logging
39
  logging.basicConfig(
40
  level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
@@ -152,6 +152,9 @@ def create_app():
152
  outputs=[melody_output, melody_status],
153
  )
154
 
 
 
 
155
  # TODO DELETE THIS AS IT IRRELEVENT TO STORY GENERATION
156
  """ with gr.Tab("Character Counter"):
157
  letter_counter_component() """
 
26
  create_chapter_navigation,
27
  create_chapter_accordion,
28
  create_story_melody_section,
29
+ create_3d_model_viewer,
30
  )
31
  from ui.mcp_components import letter_counter_component
32
  from controllers.app_controller import (
 
35
  )
36
  from ui.events import setup_event_handlers
37
 
 
38
  # Configure logging
39
  logging.basicConfig(
40
  level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 
152
  outputs=[melody_output, melody_status],
153
  )
154
 
155
+ # 3D Model Viewer Tab (demo)
156
+ create_3d_model_viewer(story_text)
157
+
158
  # TODO DELETE THIS AS IT IRRELEVENT TO STORY GENERATION
159
  """ with gr.Tab("Character Counter"):
160
  letter_counter_component() """
controllers/app_controller.py CHANGED
@@ -46,16 +46,19 @@ def process_story_generation(
46
 
47
  # Process PDF if provided
48
  pdf_content = ""
 
 
49
  if pdf_file:
50
  logger.info("Extracting text from PDF")
51
  pdf_content = extract_text_from_pdf(pdf_file)
52
  # summarize the PDF content for better prompting using mistral
53
- mistral_api = MistralAPI()
54
- summarized_pdf = mistral_api.send_request(
55
- f"Summarize the following Text content into a single-sentence children's story without any explanations, tags, or formatting—just plain text in one line.: {pdf_content}"
56
- )["choices"][0]["message"]["content"]
57
- logger.info(f"summarized_pdf: {summarized_pdf}")
58
- if pdf_content.startswith("Error:"):
 
59
  logger.error(f"PDF extraction error: {pdf_content}")
60
 
61
  # Generate story
@@ -73,7 +76,7 @@ def process_story_generation(
73
 
74
  if story_response.startswith("Error:"):
75
  logger.error(f"Story generation error: {story_response}")
76
- return "", story_response, ""
77
 
78
  try:
79
  # Parse JSON response
@@ -84,12 +87,16 @@ def process_story_generation(
84
  return (title, story, gr.update(interactive=True, visible=True))
85
  except json.JSONDecodeError:
86
  logger.error("Failed to parse story JSON response")
87
- return "", f"Error: Failed to parse story response: {story_response}"
 
 
 
 
88
 
89
  except Exception as e:
90
  error_msg = f"Unexpected error during story generation: {str(e)}"
91
  logger.error(error_msg, exc_info=True)
92
- return f"Error: {error_msg}"
93
 
94
 
95
  def process_chapters(
 
46
 
47
  # Process PDF if provided
48
  pdf_content = ""
49
+ summarized_pdf = "" # Initialize with empty string by default
50
+
51
  if pdf_file:
52
  logger.info("Extracting text from PDF")
53
  pdf_content = extract_text_from_pdf(pdf_file)
54
  # summarize the PDF content for better prompting using mistral
55
+ if pdf_content and not pdf_content.startswith("Error:"):
56
+ mistral_api = MistralAPI()
57
+ summarized_pdf = mistral_api.send_request(
58
+ f"Summarize the following Text content into a single-sentence children's story without any explanations, tags, or formatting—just plain text in one line.: {pdf_content}"
59
+ )["choices"][0]["message"]["content"]
60
+ logger.info(f"summarized_pdf: {summarized_pdf}")
61
+ else:
62
  logger.error(f"PDF extraction error: {pdf_content}")
63
 
64
  # Generate story
 
76
 
77
  if story_response.startswith("Error:"):
78
  logger.error(f"Story generation error: {story_response}")
79
+ return "", story_response, gr.update(interactive=False)
80
 
81
  try:
82
  # Parse JSON response
 
87
  return (title, story, gr.update(interactive=True, visible=True))
88
  except json.JSONDecodeError:
89
  logger.error("Failed to parse story JSON response")
90
+ return (
91
+ "",
92
+ f"Error: Failed to parse story response: {story_response}",
93
+ gr.update(interactive=False),
94
+ )
95
 
96
  except Exception as e:
97
  error_msg = f"Unexpected error during story generation: {str(e)}"
98
  logger.error(error_msg, exc_info=True)
99
+ return "", f"Error: {error_msg}", gr.update(interactive=False)
100
 
101
 
102
  def process_chapters(
services/mesh_service.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import json
3
+ import os
4
+ from typing import Dict, Any, Optional, TypedDict, Union, Literal
5
+ from pathlib import Path
6
+ import base64
7
+
8
+
9
+ class ModelData(TypedDict):
10
+ prompt: str
11
+ model: str
12
+ format: str
13
+ mesh_base64: str
14
+
15
+
16
+ class MeshResponse(TypedDict):
17
+ text: str
18
+ model_data: ModelData
19
+ model: str
20
+ image_base64: str
21
+ used_image_input: bool
22
+
23
+
24
+ class ErrorResponse(TypedDict):
25
+ error: str
26
+
27
+
28
+ OutputFormatType = Literal["glb", "obj", "stl"]
29
+
30
+
31
+ def get_mesh_base64(
32
+ text: str, apply_texture: bool = False, output_format: OutputFormatType = "glb"
33
+ ) -> Union[MeshResponse, ErrorResponse]:
34
+ """
35
+ Retrieve the base64 encoded mesh data for the 3D model viewer by making an API call.
36
+
37
+ Args:
38
+ text (str): The description of the 3D model.
39
+ apply_texture (bool): Whether to apply texture to the model.
40
+ output_format (OutputFormatType): The desired output format ('glb', 'obj', or 'stl').
41
+
42
+ Returns:
43
+ Union[MeshResponse, ErrorResponse]: The API response as JSON or an error message.
44
+ """
45
+ url = os.getenv("THREE_D_API_URL", "https://3d-model-inference-api.com")
46
+
47
+ headers = {"Content-Type": "application/json"}
48
+ payload = {
49
+ "text": text,
50
+ "apply_texture": apply_texture,
51
+ "output_format": output_format,
52
+ }
53
+
54
+ try:
55
+ response = requests.post(
56
+ url,
57
+ headers=headers,
58
+ data=json.dumps(payload),
59
+ )
60
+ response.raise_for_status() # Raise an exception for HTTP errors
61
+ return response.json()
62
+ except requests.exceptions.RequestException as e:
63
+ return {"error": f"Error retrieving mesh data: {str(e)}"}
64
+ except json.JSONDecodeError:
65
+ return {"error": "Failed to parse API response as JSON"}
66
+
67
+
68
+ def transform_base64_to_glb_file(base64_data, output_path=None):
69
+ """
70
+ Transform a base64-encoded GLB model to a .glb file and return the path for gr.Model3D
71
+
72
+ Args:
73
+ base64_data (str): The base64-encoded GLB data
74
+ output_path (str, optional): Path where to save the .glb file.
75
+ If None, creates a temp file in assets/models/
76
+
77
+ Returns:
78
+ str: The path to the saved .glb file
79
+ """
80
+ if output_path is None:
81
+ # Create models directory if it doesn't exist
82
+ models_dir = Path("assets/models")
83
+ models_dir.mkdir(parents=True, exist_ok=True)
84
+ output_path = models_dir / "model.glb"
85
+
86
+ # Ensure parent directories exist
87
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
88
+
89
+ # Decode the base64 data
90
+ binary_data = base64.b64decode(base64_data)
91
+
92
+ # Write the binary data to a .glb file
93
+ with open(output_path, "wb") as f:
94
+ f.write(binary_data)
95
+
96
+ return str(output_path)
ui/components.py CHANGED
@@ -5,6 +5,9 @@ UI components for the Magic Story Creator application
5
  import gradio as gr
6
  from config import constants
7
 
 
 
 
8
 
9
  def create_header():
10
  """Create the main header section of the application"""
@@ -415,3 +418,141 @@ def create_story_melody_section():
415
  )
416
 
417
  return generate_melody_button, melody_status, melody_output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  import gradio as gr
6
  from config import constants
7
 
8
+ from services.mesh_service import get_mesh_base64, transform_base64_to_glb_file
9
+ from util.mistral_api_client import MistralAPI
10
+
11
 
12
  def create_header():
13
  """Create the main header section of the application"""
 
418
  )
419
 
420
  return generate_melody_button, melody_status, melody_output
421
+
422
+
423
+ # TODO split this further later
424
+ def create_3d_model_viewer(story: str = "simple yellow duck"):
425
+ """
426
+ Create a 3D model viewer component that displays a mesh from a base64 string.
427
+ For now, this uses a placeholder HTML with a message and a download link for the mesh.
428
+ In a real app, you would use a JS 3D viewer (e.g., Three.js) embedded in the HTML.
429
+ """
430
+
431
+ def get_prompt_from_story(story_text):
432
+ """
433
+ Extract a prompt from the story text for generating a 3D model.
434
+
435
+ Uses Mistral API to analyze the story and generate an appropriate
436
+ 3D model prompt based on characters, objects, or scenes in the story.
437
+
438
+ Args:
439
+ story_text (str): The story text to analyze
440
+
441
+ Returns:
442
+ str: A concise prompt suitable for 3D model generation
443
+ """
444
+ try:
445
+ import logging
446
+
447
+ logger = logging.getLogger(__name__)
448
+
449
+ # Initialize Mistral API
450
+ mistral_api = MistralAPI()
451
+
452
+ # Create a prompt for extracting a 3D model description
453
+ system_prompt = """
454
+ You are an assistant that analyzes children's stories and extracts
455
+ concise descriptions of key objects, characters, or scenes that would
456
+ make a good 3D model. Focus on something iconic from the story that
457
+ would be visually interesting and meaningful to the child.
458
+ """
459
+
460
+ instruction_prompt = f"""
461
+ Read this children's story and suggest a simple, clear description for a 3D model
462
+ that represents an important element from the story (character, object, or scene).
463
+
464
+ Keep your response to a single phrase or short sentence (max 10 words)
465
+ that clearly describes what to model in 3D. Don't use any formatting,
466
+ explanations, or additional text - just the model description itself.
467
+
468
+ Story: {story_text[:1500]}...
469
+ """
470
+
471
+ # Send request to Mistral API
472
+ logger.info("Generating 3D model prompt from story text")
473
+ response = mistral_api.send_request(instruction_prompt, system_prompt)
474
+
475
+ # Extract the model prompt from the response
476
+ if "choices" in response and len(response["choices"]) > 0:
477
+ model_prompt = response["choices"][0]["message"]["content"].strip()
478
+
479
+ # Clean up the prompt to ensure it's suitable for 3D generation
480
+ # Remove quotes if present and limit length
481
+ model_prompt = model_prompt.strip("\"'").split(".")[0]
482
+ if len(model_prompt) > 100:
483
+ model_prompt = model_prompt[:100]
484
+
485
+ logger.info(f"Generated 3D model prompt: {model_prompt}")
486
+ return model_prompt
487
+ else:
488
+ logger.error("Failed to generate model prompt from Mistral API")
489
+ return "magical storybook character"
490
+
491
+ except Exception as e:
492
+ logger.error(f"Error generating 3D model prompt: {e}")
493
+ return "friendly cartoon character from a children's story"
494
+
495
+ generated_prompt_from_story = get_prompt_from_story(story)
496
+ prompt_state = gr.State(value=generated_prompt_from_story)
497
+
498
+ gr.HTML("""
499
+ <div class="image-header-wrapper" style="margin: 30px 0 15px 0;">
500
+ <h1 class="sub-header" style="margin-left: 16px; padding-bottom: 36px;">
501
+ Create a Magical 3D Model from Your Story!
502
+ </h1>
503
+ </div>
504
+ <p class="text" style="font-size: 1.2em; text-align: center;">Click the button below to generate a 3D model from your story!</p>
505
+ """)
506
+
507
+ with gr.Blocks(elem_classes="melody-box"):
508
+ with gr.Row():
509
+ with gr.Column(scale=1, min_width=200):
510
+ generate_model_button = gr.Button(
511
+ "Create 3D Model 🎨",
512
+ variant="primary",
513
+ elem_classes="melody-button",
514
+ )
515
+
516
+ with gr.Column(scale=2):
517
+ model_viewer = gr.Model3D(label="3D Model Viewer", clear_color=[0.0, 0.0, 0.0, 0.0])
518
+
519
+ model_status = gr.Markdown("", visible=False)
520
+
521
+ # Add status message and model display
522
+
523
+ def generate_3d_model(prompt):
524
+ model_response = get_mesh_base64(
525
+ text=prompt, apply_texture=False, output_format="glb"
526
+ )
527
+
528
+ # Check if response contains an error
529
+ if "error" in model_response:
530
+ return None, f"Error: {model_response['error']}"
531
+
532
+ # Check if the expected data structure exists
533
+ if (
534
+ "model_data" not in model_response
535
+ or "mesh_base64" not in model_response["model_data"]
536
+ ):
537
+ return (
538
+ None,
539
+ "Error: Received unexpected response format from 3D model API",
540
+ )
541
+
542
+ try:
543
+ glb_file_path = transform_base64_to_glb_file(
544
+ model_response["model_data"]["mesh_base64"]
545
+ )
546
+ return (
547
+ glb_file_path,
548
+ f"Successfully generated 3D model: {prompt}",
549
+ )
550
+ except Exception as e:
551
+ return None, f"Error processing model data: {str(e)}"
552
+
553
+ # Connect the button to the generation function
554
+ generate_model_button.click(
555
+ generate_3d_model,
556
+ inputs=[prompt_state],
557
+ outputs=[model_viewer, model_status],
558
+ )
util/mistral_api_client.py CHANGED
@@ -8,8 +8,9 @@ logger = logging.getLogger(__name__)
8
 
9
  # Constants
10
  MISTRAL_API_ENDPOINT = "https://api.mistral.ai/v1/chat/completions"
11
- MISTRAL_MODEL = "mistral-medium-latest"
12
  API_KEY_ENV_VAR = "MISTRAL_API_KEY"
 
13
 
14
 
15
  class MistralAPI:
@@ -26,7 +27,9 @@ class MistralAPI:
26
  )
27
  self.mistral_model = mistral_model
28
 
29
- def send_request(self, prompt: str) -> Dict:
 
 
30
  """
31
  Send a request to the Mistral API with the given prompt.
32
 
@@ -44,7 +47,10 @@ class MistralAPI:
44
 
45
  data = {
46
  "model": self.mistral_model,
47
- "messages": [{"role": "user", "content": prompt}],
 
 
 
48
  }
49
 
50
  try:
 
8
 
9
  # Constants
10
  MISTRAL_API_ENDPOINT = "https://api.mistral.ai/v1/chat/completions"
11
+ MISTRAL_MODEL = "ministral-8b-latest"
12
  API_KEY_ENV_VAR = "MISTRAL_API_KEY"
13
+ DEFAULT_SYSTEM_PROMPT = "You are a helpful assistant. Please respond to the user's queries with just text and no additional formatting or explanations."
14
 
15
 
16
  class MistralAPI:
 
27
  )
28
  self.mistral_model = mistral_model
29
 
30
+ def send_request(
31
+ self, prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT
32
+ ) -> Dict:
33
  """
34
  Send a request to the Mistral API with the given prompt.
35
 
 
47
 
48
  data = {
49
  "model": self.mistral_model,
50
+ "messages": [
51
+ {"role": "system", "content": system_prompt},
52
+ {"role": "user", "content": prompt},
53
+ ],
54
  }
55
 
56
  try: