|
import gradio as gr |
|
import json |
|
import tempfile |
|
import os |
|
from typing import List, Optional, Literal |
|
from PIL import Image |
|
import spaces |
|
from pathlib import Path |
|
from htrflow.volume.volume import Collection |
|
from htrflow.pipeline.pipeline import Pipeline |
|
|
|
DEFAULT_OUTPUT = "alto" |
|
CHOICES = ["txt", "alto", "page", "json"] |
|
|
|
PIPELINE_CONFIGS = { |
|
"letter_english": { |
|
"steps": [ |
|
{ |
|
"step": "Segmentation", |
|
"settings": { |
|
"model": "yolo", |
|
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, |
|
"generation_settings": {"batch_size": 8}, |
|
}, |
|
}, |
|
{ |
|
"step": "TextRecognition", |
|
"settings": { |
|
"model": "TrOCR", |
|
"model_settings": {"model": "microsoft/trocr-base-handwritten"}, |
|
"generation_settings": {"batch_size": 16}, |
|
}, |
|
}, |
|
{"step": "OrderLines"}, |
|
] |
|
}, |
|
"letter_swedish": { |
|
"steps": [ |
|
{ |
|
"step": "Segmentation", |
|
"settings": { |
|
"model": "yolo", |
|
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, |
|
"generation_settings": {"batch_size": 8}, |
|
}, |
|
}, |
|
{ |
|
"step": "TextRecognition", |
|
"settings": { |
|
"model": "TrOCR", |
|
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"}, |
|
"generation_settings": {"batch_size": 16}, |
|
}, |
|
}, |
|
{"step": "OrderLines"}, |
|
] |
|
}, |
|
"spread_english": { |
|
"steps": [ |
|
{ |
|
"step": "Segmentation", |
|
"settings": { |
|
"model": "yolo", |
|
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"}, |
|
"generation_settings": {"batch_size": 4}, |
|
}, |
|
}, |
|
{ |
|
"step": "Segmentation", |
|
"settings": { |
|
"model": "yolo", |
|
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, |
|
"generation_settings": {"batch_size": 8}, |
|
}, |
|
}, |
|
{ |
|
"step": "TextRecognition", |
|
"settings": { |
|
"model": "TrOCR", |
|
"model_settings": {"model": "microsoft/trocr-base-handwritten"}, |
|
"generation_settings": {"batch_size": 16}, |
|
}, |
|
}, |
|
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}}, |
|
] |
|
}, |
|
"spread_swedish": { |
|
"steps": [ |
|
{ |
|
"step": "Segmentation", |
|
"settings": { |
|
"model": "yolo", |
|
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"}, |
|
"generation_settings": {"batch_size": 4}, |
|
}, |
|
}, |
|
{ |
|
"step": "Segmentation", |
|
"settings": { |
|
"model": "yolo", |
|
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, |
|
"generation_settings": {"batch_size": 8}, |
|
}, |
|
}, |
|
{ |
|
"step": "TextRecognition", |
|
"settings": { |
|
"model": "TrOCR", |
|
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"}, |
|
"generation_settings": {"batch_size": 16}, |
|
}, |
|
}, |
|
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}}, |
|
] |
|
}, |
|
} |
|
|
|
@spaces.GPU |
|
def process_htr(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_english", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None): |
|
"""Process handwritten text recognition and return extracted text with specified format file.""" |
|
if image_path is None: |
|
return "Error: No image provided", None |
|
|
|
try: |
|
original_filename = Path(image_path).stem or "output" |
|
|
|
if custom_settings: |
|
try: |
|
config = json.loads(custom_settings) |
|
except json.JSONDecodeError: |
|
return "Error: Invalid JSON in custom_settings parameter", None |
|
else: |
|
config = PIPELINE_CONFIGS[document_type] |
|
|
|
collection = Collection([image_path]) |
|
pipeline = Pipeline.from_config(config) |
|
|
|
try: |
|
processed_collection = pipeline.run(collection) |
|
except Exception as pipeline_error: |
|
return f"Error: Pipeline execution failed: {str(pipeline_error)}", None |
|
|
|
temp_dir = Path(tempfile.mkdtemp()) |
|
export_dir = temp_dir / output_format |
|
processed_collection.save(directory=str(export_dir), serializer=output_format) |
|
|
|
output_file_path = None |
|
for root, _, files in os.walk(export_dir): |
|
for file in files: |
|
old_path = os.path.join(root, file) |
|
file_ext = Path(file).suffix |
|
new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}" |
|
new_path = os.path.join(root, new_filename) |
|
os.rename(old_path, new_path) |
|
output_file_path = new_path |
|
break |
|
|
|
extracted_text = extract_text_from_collection(processed_collection) |
|
|
|
return extracted_text, output_file_path |
|
|
|
except Exception as e: |
|
return f"Error: HTR processing failed: {str(e)}", None |
|
|
|
def extract_text_from_collection(collection: Collection) -> str: |
|
text_lines = [] |
|
for page in collection.pages: |
|
for node in page.traverse(): |
|
if hasattr(node, "text") and node.text: |
|
text_lines.append(node.text) |
|
return "\n".join(text_lines) |
|
|
|
def create_htrflow_mcp_server(): |
|
demo = gr.Interface( |
|
fn=process_htr, |
|
inputs=[ |
|
gr.Image(type="filepath", label="Upload Image or Enter URL"), |
|
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_english", label="Document Type"), |
|
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"), |
|
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings"), |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Extracted Text", lines=10), |
|
gr.File(label="Download Output File") |
|
], |
|
title="HTRflow MCP Server", |
|
description="Process handwritten text from uploaded file or URL and get extracted text with output file in specified format", |
|
api_name="process_htr", |
|
) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_htrflow_mcp_server() |
|
demo.launch(mcp_server=True) |