grady / app.py
bstraehle's picture
Update app.py
666d299 verified
import os, threading
import gradio as gr
from crew import run_crew
from utils import get_questions
def ask(question, openai_api_key, gemini_api_key, anthropic_api_key, file_name = ""):
"""
Ask General AI Assistant a question to answer.
Args:
question (str): The question to answer
openai_api_key (str): OpenAI API key
gemini_api_key (str): Gemini API key
anthropic_api_key (str): Anthropic API key
file_name (str): Optional file name
Returns:
str: The answer to the question
"""
if not question:
raise gr.Error("Question is required.")
if not openai_api_key:
raise gr.Error("OpenAI API Key is required.")
if not gemini_api_key:
raise gr.Error("Gemini API Key is required.")
if not anthropic_api_key:
raise gr.Error("Anthropic API Key is required.")
if file_name:
file_name = f"data/{file_name}"
lock = threading.Lock()
with lock:
answer = ""
try:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["GEMINI_API_KEY"] = gemini_api_key
os.environ["MODEL_API_KEY"] = anthropic_api_key
answer = run_crew(question, file_name)
except Exception as e:
raise gr.Error(e)
finally:
del os.environ["OPENAI_API_KEY"]
del os.environ["GEMINI_API_KEY"]
del os.environ["MODEL_API_KEY"]
return answer
gr.close_all()
with gr.Blocks() as grady:
gr.Markdown("## Grady - General AI Assistant")
with gr.Tab("Solution"):
gr.Markdown(os.environ.get("DESCRIPTION"))
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
question = gr.Textbox(
label="Question *",
placeholder="In the 2025 Gradio Agents & MCP Hackathon, what percentage of participants submitted a solution during the last 24 hours?",
interactive=True
)
with gr.Row():
level = gr.Radio(
choices=[1, 2, 3],
label="GAIA Benchmark Level",
interactive=True,
scale=1
)
ground_truth = gr.Textbox(
label="Ground Truth",
interactive=True,
scale=1
)
file_name = gr.Textbox(
label="File Name",
interactive=True,
scale=2
)
with gr.Row():
openai_api_key = gr.Textbox(
label="OpenAI API Key *",
type="password",
placeholder="sk‑...",
interactive=True
)
gemini_api_key = gr.Textbox(
label="Gemini API Key *",
type="password",
interactive=True
)
anthropic_api_key = gr.Textbox(
label="Anthropic API Key *",
type="password",
placeholder="sk-ant-...",
interactive=True
)
with gr.Row():
clear_btn = gr.ClearButton(
components=[question, level, ground_truth, file_name]
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
answer = gr.Textbox(
label="Answer",
lines=1,
interactive=False
)
submit_btn.click(
fn=ask,
inputs=[question, openai_api_key, gemini_api_key, anthropic_api_key, file_name],
outputs=answer
)
QUESTION_FILE_PATH = "data/gaia_validation.jsonl"
gr.Examples(
label="GAIA Benchmark Level 1 Problems",
examples=get_questions(QUESTION_FILE_PATH, 1),
inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
outputs=answer,
cache_examples=False
)
gr.Examples(
label="GAIA Benchmark Level 2 Problems",
examples=get_questions(QUESTION_FILE_PATH, 2),
inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
outputs=answer,
cache_examples=False
)
gr.Examples(
label="GAIA Benchmark Level 3 Problems",
examples=get_questions(QUESTION_FILE_PATH, 3),
inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
outputs=answer,
cache_examples=False
)
with gr.Tab("Documentation"):
gr.Markdown(os.environ.get("DOCUMENTATION"))
grady.launch(mcp_server=True)