consilium_mcp / app.py
azettl's picture
Update app.py
8507f3c verified
raw
history blame
72.1 kB
import gradio as gr
import requests
import json
import os
import asyncio
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
from dotenv import load_dotenv
import time
import re
from collections import Counter
import threading
import queue
import uuid
from gradio_consilium_roundtable import consilium_roundtable
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel, VisitWebpageTool, Tool
# Load environment variables
load_dotenv()
# API Configuration - These will be updated by UI if needed
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
MODERATOR_MODEL = os.getenv("MODERATOR_MODEL", "mistral")
# Session-based storage for isolated discussions
user_sessions: Dict[str, Dict] = {}
# Model Images
avatar_images = {
"QwQ-32B": "https://cdn-avatars.huggingface.co/v1/production/uploads/620760a26e3b7210c2ff1943/-s1gyJfvbE1RgO5iBeNOi.png",
"DeepSeek-R1": "https://logosandtypes.com/wp-content/uploads/2025/02/deepseek.svg",
"Mistral Large": "https://logosandtypes.com/wp-content/uploads/2025/02/mistral-ai.svg",
"Meta-Llama-3.3-70B-Instruct": "https://registry.npmmirror.com/@lobehub/icons-static-png/1.46.0/files/dark/meta-color.png",
}
# NATIVE FUNCTION CALLING: Define search functions for both Mistral and SambaNova
SEARCH_FUNCTIONS = [
{
"type": "function",
"function": {
"name": "search_web",
"description": "Search the web for current information and data relevant to the decision being analyzed",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query to find current information relevant to the expert analysis"
}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "search_wikipedia",
"description": "Search Wikipedia for comprehensive background information and authoritative data",
"parameters": {
"type": "object",
"properties": {
"topic": {
"type": "string",
"description": "The topic to research on Wikipedia for comprehensive background information"
}
},
"required": ["topic"]
}
}
}
]
class WikipediaTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia for comprehensive information on any topic"
inputs = {"query": {"type": "string", "description": "The topic to search for on Wikipedia"}}
output_type = "string"
def forward(self, query: str) -> str:
try:
import wikipedia
# Search for the topic
search_results = wikipedia.search(query, results=3)
if not search_results:
return f"No Wikipedia articles found for: {query}"
# Get the first article
page = wikipedia.page(search_results[0])
summary = page.summary[:1000] + "..." if len(page.summary) > 1000 else page.summary
return f"**Wikipedia: {page.title}**\n\n{summary}\n\nSource: {page.url}"
except Exception as e:
return f"Wikipedia search error: {str(e)}"
class WebSearchAgent:
def __init__(self):
try:
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaTool(),
FinalAnswerTool()
],
model=InferenceClientModel(),
max_steps=3,
verbosity_level=0
)
except Exception as e:
print(f"Warning: Could not initialize search agent: {e}")
self.agent = None
def search(self, query: str, max_results: int = 5) -> str:
"""Use the CodeAgent to perform comprehensive web search and analysis"""
if not self.agent:
return f"Research agent not available. Please check dependencies."
try:
# Simplified prompt for TinyLlama to avoid code parsing issues
agent_prompt = f"Search for information about: {query}. Provide a brief summary of findings."
# Run the agent
result = self.agent.run(agent_prompt)
# Clean and validate the result
if result and isinstance(result, str) and len(result.strip()) > 0:
# Remove any code-like syntax that might cause parsing errors
cleaned_result = result.replace('```', '').replace('`', '').strip()
return f"**Web Research Results for: {query}**\n\n{cleaned_result}"
else:
return f"**Research for: {query}**\n\nNo clear results found. Please try a different search term."
except Exception as e:
# More robust fallback - return something useful instead of failing
error_msg = str(e)
if "max steps" in error_msg.lower():
return f"**Research for: {query}**\n\nResearch completed but reached complexity limit. Basic analysis: This query relates to {query.lower()} and would benefit from further investigation."
elif "syntax" in error_msg.lower():
return f"**Research for: {query}**\n\nResearch encountered formatting issues but found relevant information about {query.lower()}."
else:
return f"**Research for: {query}**\n\nResearch temporarily unavailable. Error: {error_msg[:100]}..."
def search_wikipedia(self, topic: str) -> str:
"""Search Wikipedia for comprehensive information"""
try:
wiki_tool = WikipediaTool()
result = wiki_tool.forward(topic)
# Ensure we return a proper string and clean it
if result and isinstance(result, str):
# Clean any code syntax that might cause issues
cleaned_result = result.replace('```', '').replace('`', '').strip()
return cleaned_result
elif result:
return str(result)
else:
return f"**Wikipedia Research for: {topic}**\n\nNo results found, but this topic likely relates to {topic.lower()} and warrants further investigation."
except Exception as e:
return f"**Wikipedia Research for: {topic}**\n\nResearch temporarily unavailable but {topic.lower()} is a relevant topic for analysis. Error: {str(e)[:100]}..."
def get_session_id(request: gr.Request = None) -> str:
"""Generate or retrieve session ID"""
if request and hasattr(request, 'session_hash'):
return request.session_hash
return str(uuid.uuid4())
def get_or_create_session_state(session_id: str) -> Dict:
"""Get or create isolated session state"""
if session_id not in user_sessions:
user_sessions[session_id] = {
"roundtable_state": {
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
},
"discussion_log": [],
"final_answer": "",
"api_keys": {
"mistral": None,
"sambanova": None
}
}
return user_sessions[session_id]
def update_session_api_keys(mistral_key, sambanova_key, session_id_state, request: gr.Request = None):
"""Update API keys for THIS SESSION ONLY"""
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
status_messages = []
# Update keys for THIS SESSION
if mistral_key.strip():
session["api_keys"]["mistral"] = mistral_key.strip()
status_messages.append("βœ… Mistral API key saved for this session")
elif MISTRAL_API_KEY: # Fall back to env var
session["api_keys"]["mistral"] = MISTRAL_API_KEY
status_messages.append("βœ… Using Mistral API key from environment")
else:
status_messages.append("❌ No Mistral API key available")
if sambanova_key.strip():
session["api_keys"]["sambanova"] = sambanova_key.strip()
status_messages.append("βœ… SambaNova API key saved for this session")
elif SAMBANOVA_API_KEY:
session["api_keys"]["sambanova"] = SAMBANOVA_API_KEY
status_messages.append("βœ… Using SambaNova API key from environment")
else:
status_messages.append("❌ No SambaNova API key available")
return " | ".join(status_messages), session_id
class VisualConsensusEngine:
def __init__(self, moderator_model: str = None, update_callback=None, session_id: str = None):
self.moderator_model = moderator_model or MODERATOR_MODEL
self.search_agent = WebSearchAgent()
self.update_callback = update_callback
self.session_id = session_id
# Get session-specific keys or fall back to global
session = get_or_create_session_state(session_id) if session_id else {"api_keys": {}}
session_keys = session.get("api_keys", {})
mistral_key = session_keys.get("mistral") or MISTRAL_API_KEY
sambanova_key = session_keys.get("sambanova") or SAMBANOVA_API_KEY
# Research Agent stays visible but is no longer an active participant
self.models = {
'mistral': {
'name': 'Mistral Large',
'api_key': mistral_key,
'available': bool(mistral_key)
},
'sambanova_deepseek': {
'name': 'DeepSeek-R1',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'sambanova_llama': {
'name': 'Meta-Llama-3.3-70B-Instruct',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'sambanova_qwq': {
'name': 'QwQ-32B',
'api_key': sambanova_key,
'available': bool(sambanova_key)
}
}
# Store session keys for API calls
self.session_keys = {
'mistral': mistral_key,
'sambanova': sambanova_key
}
# PROFESSIONAL: Strong, expert role definitions matched to decision protocols
self.roles = {
'standard': "Provide expert analysis with clear reasoning and evidence.",
'expert_advocate': "You are a PASSIONATE EXPERT advocating for your specialized position. Present compelling evidence with conviction.",
'critical_analyst': "You are a RIGOROUS CRITIC. Identify flaws, risks, and weaknesses in arguments with analytical precision.",
'strategic_advisor': "You are a STRATEGIC ADVISOR. Focus on practical implementation, real-world constraints, and actionable insights.",
'research_specialist': "You are a RESEARCH EXPERT with deep domain knowledge. Provide authoritative analysis and evidence-based insights.",
'innovation_catalyst': "You are an INNOVATION EXPERT. Challenge conventional thinking and propose breakthrough approaches."
}
# PROFESSIONAL: Different prompt styles based on decision protocol
self.protocol_styles = {
'consensus': {
'intensity': 'collaborative',
'goal': 'finding common ground',
'language': 'respectful but rigorous'
},
'majority_voting': {
'intensity': 'competitive',
'goal': 'winning the argument',
'language': 'passionate advocacy'
},
'weighted_voting': {
'intensity': 'analytical',
'goal': 'demonstrating expertise',
'language': 'authoritative analysis'
},
'ranked_choice': {
'intensity': 'comprehensive',
'goal': 'exploring all options',
'language': 'systematic evaluation'
},
'unanimity': {
'intensity': 'diplomatic',
'goal': 'unanimous agreement',
'language': 'bridge-building dialogue'
}
}
def update_visual_state(self, state_update: Dict[str, Any]):
"""Update the visual roundtable state for this session"""
if self.update_callback:
self.update_callback(state_update)
def show_research_activity(self, speaker: str, function: str, query: str):
"""Show research happening in the UI with Research Agent activation"""
# Get current state properly
session = get_or_create_session_state(self.session_id)
current_state = session["roundtable_state"]
all_messages = list(current_state.get("messages", [])) # Make a copy
participants = current_state.get("participants", [])
# PRESERVE existing bubbles throughout research
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
# Step 1: Show expert waiting for research
waiting_message = {
"speaker": speaker,
"text": f"πŸ” Requesting research: {query}",
"type": "research_request"
}
all_messages.append(waiting_message)
self.update_visual_state({
"participants": participants,
"messages": all_messages,
"currentSpeaker": speaker,
"thinking": [],
"showBubbles": existing_bubbles + [speaker] # PRESERVE + ADD CURRENT
})
time.sleep(1)
# Step 2: Show Research Agent thinking
self.update_visual_state({
"participants": participants,
"messages": all_messages,
"currentSpeaker": None,
"thinking": ["Research Agent"],
"showBubbles": existing_bubbles + [speaker, "Research Agent"] # PRESERVE ALL
})
time.sleep(1)
# Step 3: Show Research Agent working
research_message = {
"speaker": "Research Agent",
"text": f"πŸ” Researching: {function.replace('_', ' ')} - '{query}'",
"type": "research_activity"
}
all_messages.append(research_message)
self.update_visual_state({
"participants": participants,
"messages": all_messages,
"currentSpeaker": "Research Agent",
"thinking": [],
"showBubbles": existing_bubbles + [speaker, "Research Agent"] # PRESERVE ALL
})
time.sleep(2) # Longer pause to see research happening
# Step 4: Research Agent goes back to quiet, expert processes results
processing_message = {
"speaker": speaker,
"text": f"πŸ“Š Processing research results...",
"type": "research_processing"
}
all_messages.append(processing_message)
self.update_visual_state({
"participants": participants,
"messages": all_messages,
"currentSpeaker": speaker,
"thinking": [],
"showBubbles": existing_bubbles + [speaker] # PRESERVE EXISTING + CURRENT
})
time.sleep(1)
def handle_function_calls(self, completion, original_prompt: str, calling_model: str) -> str:
"""UNIFIED function call handler for both Mistral and SambaNova"""
# Check if completion is valid
if not completion or not completion.choices or len(completion.choices) == 0:
print(f"Invalid completion object for {calling_model}")
return "Analysis temporarily unavailable - invalid API response"
message = completion.choices[0].message
# If no function calls, return regular response
if not hasattr(message, 'tool_calls') or not message.tool_calls:
# EXTRACT CONTENT PROPERLY
content = message.content
if isinstance(content, list):
# Handle structured content (like from Mistral)
text_parts = []
for part in content:
if isinstance(part, dict) and 'text' in part:
text_parts.append(part['text'])
elif isinstance(part, str):
text_parts.append(part)
return ' '.join(text_parts) if text_parts else "Analysis completed"
elif isinstance(content, str):
return content
else:
return str(content) if content else "Analysis completed"
# Get the calling model's name for UI display
calling_model_name = self.models[calling_model]['name']
# Process each function call
messages = [
{"role": "user", "content": original_prompt},
{
"role": "assistant",
"content": message.content or "",
"tool_calls": message.tool_calls
}
]
for tool_call in message.tool_calls:
try:
function_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
# Show research activity in UI
query_param = arguments.get("query") or arguments.get("topic")
if query_param:
self.show_research_activity(calling_model_name, function_name, query_param)
# Execute the function
if function_name == "search_web":
result = self.search_agent.search(arguments["query"])
elif function_name == "search_wikipedia":
result = self.search_agent.search_wikipedia(arguments["topic"])
else:
result = f"Unknown function: {function_name}"
# Ensure result is a string, not an object
if not isinstance(result, str):
result = str(result)
# Add function result to conversation
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": result
})
except Exception as e:
print(f"Error processing tool call: {str(e)}")
# Add error result to conversation
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": f"Research error: {str(e)}"
})
continue
# Continue conversation with research results integrated
try:
from openai import OpenAI
if calling_model == 'mistral':
client = OpenAI(
base_url="https://api.mistral.ai/v1",
api_key=self.session_keys.get('mistral')
)
model_name = 'mistral-large-latest'
else:
client = OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=self.session_keys.get('sambanova')
)
model_mapping = {
'sambanova_deepseek': 'DeepSeek-R1',
'sambanova_llama': 'Meta-Llama-3.3-70B-Instruct',
'sambanova_qwq': 'QwQ-32B'
}
model_name = model_mapping.get(calling_model, 'Meta-Llama-3.3-70B-Instruct')
final_completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=1000,
temperature=0.7
)
if final_completion and final_completion.choices and len(final_completion.choices) > 0:
final_content = final_completion.choices[0].message.content
# HANDLE STRUCTURED CONTENT FROM FINAL RESPONSE TOO
if isinstance(final_content, list):
text_parts = []
for part in final_content:
if isinstance(part, dict) and 'text' in part:
text_parts.append(part['text'])
elif isinstance(part, str):
text_parts.append(part)
return ' '.join(text_parts) if text_parts else "Analysis completed with research integration."
elif isinstance(final_content, str):
return final_content
else:
return str(final_content) if final_content else "Analysis completed with research integration."
else:
return message.content or "Analysis completed with research integration."
except Exception as e:
print(f"Error in follow-up completion for {calling_model}: {str(e)}")
return message.content or "Analysis completed with research integration."
def call_model(self, model: str, prompt: str, context: str = "") -> Optional[str]:
"""Enhanced model calling with native function calling support"""
if not self.models[model]['available']:
print(f"Model {model} not available - missing API key")
return None
full_prompt = f"{context}\n\n{prompt}" if context else prompt
try:
if model == 'mistral':
return self._call_mistral(full_prompt)
elif model.startswith('sambanova_'):
return self._call_sambanova(model, full_prompt)
except Exception as e:
print(f"Error calling {model}: {str(e)}")
return None
return None
def _call_sambanova(self, model: str, prompt: str) -> Optional[str]:
"""Enhanced SambaNova API call with native function calling"""
api_key = self.session_keys.get('sambanova')
if not api_key:
print(f"No SambaNova API key available for {model}")
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=api_key
)
model_mapping = {
'sambanova_deepseek': 'DeepSeek-R1',
'sambanova_llama': 'Meta-Llama-3.3-70B-Instruct',
'sambanova_qwq': 'QwQ-32B'
}
sambanova_model = model_mapping.get(model, 'Meta-Llama-3.3-70B-Instruct')
print(f"Calling SambaNova model: {sambanova_model}")
# Check if model supports function calling
supports_functions = sambanova_model in [
'DeepSeek-R1-0324',
'Meta-Llama-3.1-8B-Instruct',
'Meta-Llama-3.1-405B-Instruct',
'Meta-Llama-3.3-70B-Instruct'
]
if supports_functions:
completion = client.chat.completions.create(
model=sambanova_model,
messages=[{"role": "user", "content": prompt}],
tools=SEARCH_FUNCTIONS,
tool_choice="auto",
max_tokens=1000,
temperature=0.7
)
else:
# QwQ-32B and other models that don't support function calling
print(f"Model {sambanova_model} doesn't support function calling - using regular completion")
completion = client.chat.completions.create(
model=sambanova_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=0.7
)
# Handle function calls if present (only for models that support it)
if supports_functions:
return self.handle_function_calls(completion, prompt, model)
else:
# For models without function calling, return response directly
if completion and completion.choices and len(completion.choices) > 0:
return completion.choices[0].message.content
else:
return None
except Exception as e:
print(f"Error calling SambaNova {model} ({sambanova_model}): {str(e)}")
# Print more detailed error info
import traceback
traceback.print_exc()
return None
def _call_mistral(self, prompt: str) -> Optional[str]:
"""Enhanced Mistral API call with native function calling"""
api_key = self.session_keys.get('mistral')
if not api_key:
print("No Mistral API key available")
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.mistral.ai/v1",
api_key=api_key
)
print("Calling Mistral model: mistral-large-latest")
completion = client.chat.completions.create(
model='mistral-large-latest',
messages=[{"role": "user", "content": prompt}],
tools=SEARCH_FUNCTIONS,
tool_choice="auto",
max_tokens=1000,
temperature=0.7
)
# Check if we got a valid response
if not completion or not completion.choices or len(completion.choices) == 0:
print("Invalid response structure from Mistral")
return None
# Handle function calls if present
return self.handle_function_calls(completion, prompt, 'mistral')
except Exception as e:
print(f"Error calling Mistral API: {str(e)}")
import traceback
traceback.print_exc()
return None
def assign_roles(self, models: List[str], role_assignment: str) -> Dict[str, str]:
"""Assign expert roles for rigorous analysis"""
if role_assignment == "none":
return {model: "standard" for model in models}
roles_to_assign = []
if role_assignment == "balanced":
roles_to_assign = ["expert_advocate", "critical_analyst", "strategic_advisor", "research_specialist"]
elif role_assignment == "specialized":
roles_to_assign = ["research_specialist", "strategic_advisor", "innovation_catalyst", "expert_advocate"]
elif role_assignment == "adversarial":
roles_to_assign = ["critical_analyst", "innovation_catalyst", "expert_advocate", "strategic_advisor"]
while len(roles_to_assign) < len(models):
roles_to_assign.append("standard")
model_roles = {}
for i, model in enumerate(models):
model_roles[model] = roles_to_assign[i % len(roles_to_assign)]
return model_roles
def _extract_confidence(self, response: str) -> float:
"""Extract confidence score from response"""
if not response or not isinstance(response, str):
return 5.0
confidence_match = re.search(r'Confidence:\s*(\d+(?:\.\d+)?)', response)
if confidence_match:
try:
return float(confidence_match.group(1))
except ValueError:
pass
return 5.0
def build_position_summary(self, all_messages: List[Dict], current_model: str, topology: str = "full_mesh") -> str:
"""Build expert position summary for analysis"""
current_model_name = self.models[current_model]['name']
if topology == "full_mesh":
# Show latest position from each expert
latest_positions = {}
for msg in all_messages:
if msg["speaker"] != current_model_name and msg["speaker"] != "Research Agent":
latest_positions[msg["speaker"]] = {
'text': msg['text'][:150] + "..." if len(msg['text']) > 150 else msg['text'],
'confidence': msg.get('confidence', 5)
}
summary = "EXPERT POSITIONS:\n"
for speaker, pos in latest_positions.items():
summary += f"β€’ **{speaker}**: {pos['text']} (Confidence: {pos['confidence']}/10)\n"
elif topology == "star":
# Only show moderator's latest position
moderator_name = self.models[self.moderator_model]['name']
summary = "MODERATOR ANALYSIS:\n"
for msg in reversed(all_messages):
if msg["speaker"] == moderator_name:
text = msg['text'][:200] + "..." if len(msg['text']) > 200 else msg['text']
summary += f"β€’ **{moderator_name}**: {text}\n"
break
elif topology == "ring":
# Only show previous expert's position
available_models = [model for model, info in self.models.items() if info['available']]
current_idx = available_models.index(current_model)
prev_idx = (current_idx - 1) % len(available_models)
prev_model_name = self.models[available_models[prev_idx]]['name']
summary = "PREVIOUS EXPERT:\n"
for msg in reversed(all_messages):
if msg["speaker"] == prev_model_name:
text = msg['text'][:200] + "..." if len(msg['text']) > 200 else msg['text']
summary += f"β€’ **{prev_model_name}**: {text}\n"
break
return summary
def run_visual_consensus_session(self, question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
log_function=None):
"""Run expert consensus with protocol-appropriate intensity and Research Agent integration"""
# Get only active models (Research Agent is visual-only now)
available_models = [model for model, info in self.models.items() if info['available']]
if not available_models:
return "❌ No AI models available"
model_roles = self.assign_roles(available_models, role_assignment)
# Visual participants include Research Agent but active participants don't
visual_participant_names = [self.models[model]['name'] for model in available_models] + ["Research Agent"]
# Get protocol-appropriate style
protocol_style = self.protocol_styles.get(decision_protocol, self.protocol_styles['consensus'])
# Use session-specific logging
def log_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
if log_function:
log_function(event_type, speaker, content, **kwargs)
# Log the start
log_event('phase', content=f"🎯 Starting Expert Analysis: {question}")
log_event('phase', content=f"πŸ“Š Configuration: {len(available_models)} experts, {decision_protocol} protocol, {role_assignment} roles, {topology} topology")
# Initialize visual state with Research Agent visible
self.update_visual_state({
"participants": visual_participant_names,
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": [],
"avatarImages": avatar_images
})
all_messages = []
# Phase 1: Initial expert analysis (Research Agent activates only through function calls)
log_event('phase', content="πŸ“ Phase 1: Expert Initial Analysis")
for model in available_models:
# Log and set thinking state - PRESERVE BUBBLES
log_event('thinking', speaker=self.models[model]['name'])
# Calculate existing bubbles
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(1)
role = model_roles[model]
role_context = self.roles[role]
# PROTOCOL-ADAPTED: Prompt intensity based on decision protocol
if decision_protocol in ['majority_voting', 'ranked_choice']:
intensity_prompt = "🎯 CRITICAL DECISION"
action_prompt = "Take a STRONG, CLEAR position and defend it with compelling evidence"
stakes = "This decision has major consequences - be decisive and convincing"
elif decision_protocol == 'consensus':
intensity_prompt = "🀝 COLLABORATIVE ANALYSIS"
action_prompt = "Provide thorough analysis while remaining open to other perspectives"
stakes = "Work toward building understanding and finding common ground"
else: # weighted_voting, unanimity
intensity_prompt = "πŸ”¬ EXPERT ANALYSIS"
action_prompt = "Provide authoritative analysis with detailed reasoning"
stakes = "Your expertise and evidence quality will determine influence"
prompt = f"""{intensity_prompt}: {question}
Your Role: {role_context}
ANALYSIS REQUIREMENTS:
- {action_prompt}
- {stakes}
- Use specific examples, data, and evidence
- If you need current information or research, you can search the web or Wikipedia
- Maximum 200 words of focused analysis
- End with "Position: [YOUR CLEAR STANCE]" and "Confidence: X/10"
Provide your expert analysis:"""
# Log and set speaking state - PRESERVE BUBBLES
log_event('speaking', speaker=self.models[model]['name'])
# Calculate existing bubbles
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": [],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(2)
# Call model - may trigger function calls and Research Agent activation
response = self.call_model(model, prompt)
# CRITICAL: Ensure response is a string
if response and not isinstance(response, str):
response = str(response)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": response,
"confidence": confidence,
"role": role
}
all_messages.append(message)
# Log the full response
log_event('message',
speaker=self.models[model]['name'],
content=response,
role=role,
confidence=confidence)
else:
# Handle failed API call gracefully
log_event('message',
speaker=self.models[model]['name'],
content="Analysis temporarily unavailable - API connection failed",
role=role,
confidence=0)
message = {
"speaker": self.models[model]['name'],
"text": "⚠️ Analysis temporarily unavailable - API connection failed. Please check your API keys and try again.",
"confidence": 0,
"role": role
}
all_messages.append(message)
# Update with new message
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers,
"avatarImages": avatar_images
})
time.sleep(2) # Longer pause to see the response
# Phase 2: Rigorous discussion rounds
if discussion_rounds > 0:
log_event('phase', content=f"πŸ’¬ Phase 2: Expert Discussion ({discussion_rounds} rounds)")
for round_num in range(discussion_rounds):
log_event('phase', content=f"πŸ”„ Expert Round {round_num + 1}")
for model in available_models:
# Log thinking with preserved bubbles
log_event('thinking', speaker=self.models[model]['name'])
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(1)
# Build expert position summary
position_summary = self.build_position_summary(all_messages, model, topology)
role = model_roles[model]
role_context = self.roles[role]
# PROTOCOL-ADAPTED: Discussion intensity based on protocol
if decision_protocol in ['majority_voting', 'ranked_choice']:
discussion_style = "DEFEND your position and CHALLENGE weak arguments"
discussion_goal = "Prove why your approach is superior"
elif decision_protocol == 'consensus':
discussion_style = "BUILD on other experts' insights and ADDRESS concerns"
discussion_goal = "Work toward a solution everyone can support"
else:
discussion_style = "REFINE your analysis and RESPOND to other experts"
discussion_goal = "Demonstrate the strength of your reasoning"
discussion_prompt = f"""πŸ”„ Expert Round {round_num + 1}: {question}
Your Role: {role_context}
{position_summary}
DISCUSSION FOCUS:
- {discussion_style}
- {discussion_goal}
- Address specific points raised by other experts
- Use current data and research if needed
- Maximum 180 words of focused response
- End with "Position: [UNCHANGED/EVOLVED]" and "Confidence: X/10"
Your expert response:"""
# Log speaking with preserved bubbles
log_event('speaking', speaker=self.models[model]['name'])
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": [],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(2)
response = self.call_model(model, discussion_prompt)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": f"Round {round_num + 1}: {response}",
"confidence": confidence,
"role": model_roles[model]
}
all_messages.append(message)
log_event('message',
speaker=self.models[model]['name'],
content=f"Round {round_num + 1}: {response}",
role=model_roles[model],
confidence=confidence)
else:
# Handle failed API call gracefully
log_event('message',
speaker=self.models[model]['name'],
content=f"Round {round_num + 1}: Analysis temporarily unavailable - API connection failed",
role=model_roles[model],
confidence=0)
message = {
"speaker": self.models[model]['name'],
"text": f"Round {round_num + 1}: ⚠️ Analysis temporarily unavailable - API connection failed.",
"confidence": 0,
"role": model_roles[model]
}
all_messages.append(message)
# Update visual state
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers,
"avatarImages": avatar_images
})
time.sleep(1)
# Phase 3: PROTOCOL-SPECIFIC final decision
if decision_protocol == 'consensus':
phase_name = "🀝 Phase 3: Building Consensus"
moderator_title = "Senior Advisor"
elif decision_protocol in ['majority_voting', 'ranked_choice']:
phase_name = "βš–οΈ Phase 3: Final Decision"
moderator_title = "Lead Analyst"
else:
phase_name = "πŸ“Š Phase 3: Expert Synthesis"
moderator_title = "Lead Researcher"
log_event('phase', content=f"{phase_name} - {decision_protocol}")
log_event('thinking', speaker="All experts", content="Synthesizing final recommendation...")
expert_names = [self.models[model]['name'] for model in available_models]
# Preserve existing bubbles during final thinking
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": expert_names,
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
time.sleep(2)
# Generate PROTOCOL-APPROPRIATE final analysis
moderator = self.moderator_model if self.models[self.moderator_model]['available'] else available_models[0]
# Build expert summary
final_positions = {}
confidence_scores = []
for msg in all_messages:
speaker = msg["speaker"]
if speaker not in [moderator_title, 'Consilium', 'Research Agent']:
if speaker not in final_positions:
final_positions[speaker] = []
final_positions[speaker].append(msg)
if 'confidence' in msg:
confidence_scores.append(msg['confidence'])
# Create PROFESSIONAL expert summary
expert_summary = f"🎯 EXPERT ANALYSIS: {question}\n\nFINAL EXPERT POSITIONS:\n"
for speaker, messages in final_positions.items():
latest_msg = messages[-1]
role = latest_msg.get('role', 'standard')
# Extract the core argument
core_argument = latest_msg['text'][:200] + "..." if len(latest_msg['text']) > 200 else latest_msg['text']
confidence = latest_msg.get('confidence', 5)
expert_summary += f"\nπŸ“‹ **{speaker}** ({role}):\n{core_argument}\nFinal Confidence: {confidence}/10\n"
avg_confidence = sum(confidence_scores) / len(confidence_scores) if confidence_scores else 5.0
# PROTOCOL-SPECIFIC synthesis prompt
if decision_protocol == 'consensus':
synthesis_goal = "Build a CONSENSUS recommendation that all experts can support"
synthesis_format = "**CONSENSUS REACHED:** [Yes/Partial/No]\n**RECOMMENDED APPROACH:** [Synthesis]\n**AREAS OF AGREEMENT:** [Common ground]\n**REMAINING CONCERNS:** [Issues to address]"
elif decision_protocol in ['majority_voting', 'ranked_choice']:
synthesis_goal = "Determine the STRONGEST position and declare a clear winner"
synthesis_format = "**DECISION:** [Clear recommendation]\n**WINNING ARGUMENT:** [Most compelling case]\n**KEY EVIDENCE:** [Supporting data]\n**IMPLEMENTATION:** [Next steps]"
else:
synthesis_goal = "Synthesize expert insights into actionable recommendations"
synthesis_format = "**ANALYSIS CONCLUSION:** [Summary]\n**RECOMMENDED APPROACH:** [Best path forward]\n**RISK ASSESSMENT:** [Key considerations]\n**CONFIDENCE LEVEL:** [Overall certainty]"
consensus_prompt = f"""{expert_summary}
πŸ“Š SENIOR ANALYSIS REQUIRED:
{synthesis_goal}
SYNTHESIS REQUIREMENTS:
- Analyze the quality and strength of each expert position
- Identify areas where experts align vs disagree
- Provide a clear, actionable recommendation
- Use additional research if needed to resolve disagreements
- Maximum 300 words of decisive analysis
Average Expert Confidence: {avg_confidence:.1f}/10
Protocol: {decision_protocol}
Format:
{synthesis_format}
Provide your synthesis:"""
log_event('speaking', speaker=moderator_title, content="Synthesizing expert analysis into final recommendation...")
# Preserve existing bubbles during final speaking
existing_bubbles = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": "Consilium",
"thinking": [],
"showBubbles": existing_bubbles,
"avatarImages": avatar_images
})
# Call moderator model - may also trigger function calls
consensus_result = self.call_model(moderator, consensus_prompt)
if not consensus_result:
consensus_result = f"""**ANALYSIS INCOMPLETE:** Technical difficulties prevented full synthesis.
**RECOMMENDED APPROACH:** Manual review of expert positions required.
**KEY CONSIDERATIONS:** All expert inputs should be carefully evaluated.
**NEXT STEPS:** Retry analysis or conduct additional expert consultation."""
# Determine result quality based on protocol
if decision_protocol == 'consensus':
if "CONSENSUS REACHED: Yes" in consensus_result or avg_confidence >= 7.5:
visual_summary = "βœ… Expert Consensus Achieved"
elif "Partial" in consensus_result:
visual_summary = "⚠️ Partial Consensus - Some Expert Disagreement"
else:
visual_summary = "πŸ€” No Consensus - Significant Expert Disagreement"
elif decision_protocol in ['majority_voting', 'ranked_choice']:
if any(word in consensus_result.upper() for word in ["DECISION:", "WINNING", "RECOMMEND"]):
visual_summary = "βš–οΈ Clear Expert Recommendation"
else:
visual_summary = "πŸ€” Expert Analysis Complete"
else:
visual_summary = "πŸ“Š Expert Analysis Complete"
final_message = {
"speaker": moderator_title,
"text": f"{visual_summary}\n\n{consensus_result}",
"confidence": avg_confidence,
"role": "moderator"
}
all_messages.append(final_message)
log_event('message',
speaker=moderator_title,
content=consensus_result,
confidence=avg_confidence)
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker") and msg["speaker"] != "Research Agent"))
self.update_visual_state({
"participants": visual_participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers,
"avatarImages": avatar_images
})
log_event('phase', content="βœ… Expert Analysis Complete")
return consensus_result
def update_session_roundtable_state(session_id: str, new_state: Dict):
"""Update roundtable state for specific session"""
session = get_or_create_session_state(session_id)
session["roundtable_state"].update(new_state)
return json.dumps(session["roundtable_state"])
def run_consensus_discussion_session(question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
session_id_state: str = None,
request: gr.Request = None):
"""Session-isolated expert consensus discussion"""
# Get unique session
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
# Reset session state for new discussion
session["discussion_log"] = []
session["final_answer"] = ""
def session_visual_update_callback(state_update):
"""Session-specific visual update callback"""
update_session_roundtable_state(session_id, state_update)
def session_log_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
"""Add event to THIS session's log only"""
session["discussion_log"].append({
'type': event_type,
'speaker': speaker,
'content': content,
'timestamp': datetime.now().strftime('%H:%M:%S'),
**kwargs
})
# Create engine with session-specific callback
engine = VisualConsensusEngine(moderator_model, session_visual_update_callback, session_id)
# Run consensus with session-specific logging
result = engine.run_visual_consensus_session(
question, discussion_rounds, decision_protocol,
role_assignment, topology, moderator_model,
session_log_event
)
# Generate session-specific final answer
available_models = [model for model, info in engine.models.items() if info['available']]
session["final_answer"] = f"""## 🎯 Expert Analysis Results
{result}
---
### πŸ“Š Analysis Summary
- **Question:** {question}
- **Protocol:** {decision_protocol.replace('_', ' ').title()}
- **Topology:** {topology.replace('_', ' ').title()}
- **Experts:** {len(available_models)} AI specialists
- **Roles:** {role_assignment.title()}
- **Research Integration:** Native function calling with live data
- **Session ID:** {session_id[:3]}...
*Generated by Consilium Visual AI Consensus Platform*"""
# Format session-specific discussion log
formatted_log = format_session_discussion_log(session["discussion_log"])
return ("βœ… Expert Analysis Complete - See results below",
json.dumps(session["roundtable_state"]),
session["final_answer"],
formatted_log,
session_id)
def format_session_discussion_log(discussion_log: list) -> str:
"""Format discussion log for specific session"""
if not discussion_log:
return "No discussion log available yet."
formatted_log = "# 🎭 Complete Expert Discussion Log\n\n"
for entry in discussion_log:
timestamp = entry.get('timestamp', datetime.now().strftime('%H:%M:%S'))
if entry['type'] == 'thinking':
formatted_log += f"**{timestamp}** πŸ€” **{entry['speaker']}** is analyzing...\n\n"
elif entry['type'] == 'speaking':
formatted_log += f"**{timestamp}** πŸ’¬ **{entry['speaker']}** is presenting...\n\n"
elif entry['type'] == 'message':
formatted_log += f"**{timestamp}** πŸ“‹ **{entry['speaker']}** ({entry.get('role', 'standard')}):\n"
formatted_log += f"> {entry['content']}\n"
if 'confidence' in entry:
formatted_log += f"*Confidence: {entry['confidence']}/10*\n\n"
else:
formatted_log += "\n"
elif entry['type'] == 'phase':
formatted_log += f"\n---\n## {entry['content']}\n---\n\n"
return formatted_log
def check_model_status_session(session_id_state: str = None, request: gr.Request = None):
"""Check and display current model availability for specific session"""
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
session_keys = session.get("api_keys", {})
# Get session-specific keys or fall back to env vars
mistral_key = session_keys.get("mistral") or MISTRAL_API_KEY
sambanova_key = session_keys.get("sambanova") or SAMBANOVA_API_KEY
status_info = "## πŸ” Expert Model Availability\n\n"
models = {
'Mistral Large': mistral_key,
'DeepSeek-R1': sambanova_key,
'Meta-Llama-3.3-70B-Instruct': sambanova_key,
'QwQ-32B': sambanova_key,
'Research Agent': True
}
for model_name, available in models.items():
if model_name == 'Research Agent':
status = "βœ… Available (Built-in + Native Function Calling)"
else:
if available:
status = f"βœ… Available (Key: {available[:3]}...)"
else:
status = "❌ Not configured"
status_info += f"**{model_name}:** {status}\n\n"
return status_info
# Create the professional interface
with gr.Blocks(title="🎭 Consilium: Visual AI Consensus Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎭 Consilium: Multi-AI Expert Consensus Platform
**Watch expert AI models collaborate with live research to solve your most complex decisions**
This MCP server was built for the Gradio Agents and MCP Hackathon 2025. Additionally, I built a custom Gradio component for the roundtable (https://huggingface.co/spaces/azettl/gradio_consilium_roundtable).
πŸ“Ό Video UI: https://youtu.be/ciYLqI-Nawc
πŸ“Ό Video MCP: https://youtu.be/r92vFUXNg74
## Features:
* Visual roundtable of the AI models, including speech bubbles to see the discussion in real time.
* MCP mode enabled to also use it directly in, for example, Claude Desktop (without the visual table).
* Includes Mistral (**mistral-large-latest**) via their API and the Models **DeepSeek-R1**, **Meta-Llama-3.3-70B-Instruct** and **QwQ-32B** via the SambaNova API.
* Research Agent to search via **DuckDuckGo** or **Wikipedia**, added as a tool for the models from Mistral and Llama.
* Assign different roles to the models, the protocol they should follow, and decide the communication strategy.
* Pick one model as the lead analyst (had the best results when picking Mistral).
* Configure the amount of discussion rounds.
* After the discussion, the whole conversation and a final answer will be presented.
""")
# Hidden session state component
session_state = gr.State()
with gr.Tab("🎭 Expert Consensus Analysis"):
with gr.Row():
with gr.Column(scale=1):
question_input = gr.Textbox(
label="🎯 Strategic Decision Question",
placeholder="What complex decision would you like expert AI analysis on?",
lines=3,
value="Should our startup pivot to AI-first product development?"
)
# Professional question suggestion buttons
with gr.Row():
suggestion_btn1 = gr.Button("🏒 Business Strategy", size="sm")
suggestion_btn2 = gr.Button("βš›οΈ Technology Choice", size="sm")
suggestion_btn3 = gr.Button("🌍 Policy Analysis", size="sm")
with gr.Row():
decision_protocol = gr.Dropdown(
choices=["consensus", "majority_voting", "weighted_voting", "ranked_choice", "unanimity"],
value="consensus",
label="βš–οΈ Decision Protocol",
info="How should experts reach a conclusion?"
)
role_assignment = gr.Dropdown(
choices=["balanced", "specialized", "adversarial", "none"],
value="balanced",
label="πŸŽ“ Expert Roles",
info="How should expertise be distributed?"
)
with gr.Row():
topology = gr.Dropdown(
choices=["full_mesh", "star", "ring"],
value="full_mesh",
label="🌐 Communication Structure",
info="Full mesh: all collaborate, Star: through moderator, Ring: sequential"
)
moderator_model = gr.Dropdown(
choices=["mistral", "sambanova_deepseek", "sambanova_llama", "sambanova_qwq"],
value="mistral",
label="πŸ‘¨β€βš–οΈ Lead Analyst",
info="Mistral works best as Lead"
)
rounds_input = gr.Slider(
minimum=1, maximum=5, value=2, step=1,
label="πŸ”„ Discussion Rounds",
info="More rounds = deeper analysis"
)
start_btn = gr.Button("πŸš€ Start Expert Analysis", variant="primary", size="lg")
status_output = gr.Textbox(label="πŸ“Š Analysis Status", interactive=False)
with gr.Column(scale=2):
# The visual roundtable component
roundtable = consilium_roundtable(
label="AI Expert Roundtable",
label_icon="https://huggingface.co/front/assets/huggingface_logo-noborder.svg",
value=json.dumps({
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": [],
"avatarImages": avatar_images
})
)
# Final answer section
with gr.Row():
final_answer_output = gr.Markdown(
label="🎯 Expert Analysis Results",
value="*Expert analysis results will appear here...*"
)
# Collapsible discussion log
with gr.Accordion("πŸ“‹ Complete Expert Discussion Log", open=False):
discussion_log_output = gr.Markdown(
value="*Complete expert discussion transcript will appear here...*"
)
# Professional question handlers
def set_business_question():
return "Should our startup pivot to AI-first product development?"
def set_tech_question():
return "Microservices vs monolith architecture for our scaling platform?"
def set_policy_question():
return "Should we prioritize geoengineering research over emissions reduction?"
suggestion_btn1.click(set_business_question, outputs=[question_input])
suggestion_btn2.click(set_tech_question, outputs=[question_input])
suggestion_btn3.click(set_policy_question, outputs=[question_input])
# Event handlers
def on_start_discussion(question, rounds, protocol, roles, topology, moderator, session_id_state, request: gr.Request = None):
# Start discussion immediately
result = run_consensus_discussion_session(question, rounds, protocol, roles, topology, moderator, session_id_state, request)
return result
start_btn.click(
on_start_discussion,
inputs=[question_input, rounds_input, decision_protocol, role_assignment, topology, moderator_model, session_state],
outputs=[status_output, roundtable, final_answer_output, discussion_log_output, session_state]
)
# Auto-refresh the roundtable state every 1 second during discussion for better visibility
def refresh_roundtable(session_id_state, request: gr.Request = None):
session_id = get_session_id(request) if not session_id_state else session_id_state
if session_id in user_sessions:
return json.dumps(user_sessions[session_id]["roundtable_state"])
return json.dumps({
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": [],
"avatarImages": avatar_images
})
gr.Timer(1.0).tick(refresh_roundtable, inputs=[session_state], outputs=[roundtable])
with gr.Tab("πŸ”§ Configuration & Setup"):
gr.Markdown("## πŸ”‘ API Keys Configuration")
gr.Markdown("*Enter your API keys below OR set them as environment variables*")
gr.Markdown("**πŸ”’ Privacy:** Your API keys are stored only for your session and are not shared with other users.")
with gr.Row():
with gr.Column():
mistral_key_input = gr.Textbox(
label="Mistral API Key",
placeholder="Enter your Mistral API key...",
type="password",
info="Required for Mistral Large expert model with function calling"
)
sambanova_key_input = gr.Textbox(
label="SambaNova API Key",
placeholder="Enter your SambaNova API key...",
type="password",
info="Required for DeepSeek, Llama, and QwQ expert models with function calling"
)
with gr.Column():
# Add a button to save/update keys
save_keys_btn = gr.Button("πŸ’Ύ Save API Keys", variant="secondary")
keys_status = gr.Textbox(
label="Keys Status",
value="No API keys configured - using environment variables if available",
interactive=False
)
# Connect the save button
save_keys_btn.click(
update_session_api_keys,
inputs=[mistral_key_input, sambanova_key_input, session_state],
outputs=[keys_status, session_state]
)
model_status_display = gr.Markdown(check_model_status_session())
# Add refresh button for model status
refresh_status_btn = gr.Button("πŸ”„ Refresh Expert Status")
refresh_status_btn.click(
check_model_status_session,
inputs=[session_state],
outputs=[model_status_display]
)
gr.Markdown("""
## πŸ› οΈ Setup Instructions
### πŸš€ Quick Start (Recommended)
1. **Enter API keys above** (they'll be used only for your session)
2. **Click "Save API Keys"**
3. **Start an expert analysis with live research!**
### πŸ”‘ Get API Keys:
- **Mistral:** [console.mistral.ai](https://console.mistral.ai)
- **SambaNova:** [cloud.sambanova.ai](https://cloud.sambanova.ai)
## Local Setups
### 🌐 Environment Variables
```bash
export MISTRAL_API_KEY=your_key_here
export SAMBANOVA_API_KEY=your_key_here
export MODERATOR_MODEL=mistral
```
### πŸ“‹ Dependencies
```bash
pip install -r requirements.txt
```
### Start
```bash
python app.py
```
### πŸ”— MCP Integration
Add to your Claude Desktop config:
```json
{
"mcpServers": {
"consilium": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
```
""")
with gr.Tab("πŸ“š Documentation"):
gr.Markdown("""
## πŸŽ“ **Expert Role Assignments**
#### **βš–οΈ Balanced (Recommended for Most Decisions)**
- **Expert Advocate**: Passionate defender with compelling evidence
- **Critical Analyst**: Rigorous critic identifying flaws and risks
- **Strategic Advisor**: Practical implementer focused on real-world constraints
- **Research Specialist**: Authoritative knowledge with evidence-based insights
#### **🎯 Specialized (For Technical Decisions)**
- **Research Specialist**: Deep domain expertise and authoritative analysis
- **Strategic Advisor**: Implementation-focused practical guidance
- **Innovation Catalyst**: Breakthrough approaches and unconventional thinking
- **Expert Advocate**: Passionate championing of specialized viewpoints
#### **βš”οΈ Adversarial (For Controversial Topics)**
- **Critical Analyst**: Aggressive identification of weaknesses
- **Innovation Catalyst**: Deliberately challenging conventional wisdom
- **Expert Advocate**: Passionate defense of positions
- **Strategic Advisor**: Hard-nosed practical constraints
## βš–οΈ **Decision Protocols Explained**
### 🀝 **Consensus** (Collaborative)
- **Goal**: Find solutions everyone can support
- **Style**: Respectful but rigorous dialogue
- **Best for**: Team decisions, long-term strategy
- **Output**: "Expert Consensus Achieved" or areas of disagreement
### πŸ—³οΈ **Majority Voting** (Competitive)
- **Goal**: Let the strongest argument win
- **Style**: Passionate advocacy and strong positions
- **Best for**: Clear either/or decisions
- **Output**: "Clear Expert Recommendation" with winning argument
### πŸ“Š **Weighted Voting** (Expertise-Based)
- **Goal**: Let expertise and evidence quality determine influence
- **Style**: Authoritative analysis with detailed reasoning
- **Best for**: Technical decisions requiring deep knowledge
- **Output**: Expert synthesis weighted by confidence levels
### πŸ† **Ranked Choice** (Comprehensive)
- **Goal**: Explore all options systematically
- **Style**: Systematic evaluation of alternatives
- **Best for**: Complex decisions with multiple options
- **Output**: Ranked recommendations with detailed analysis
### πŸ”’ **Unanimity** (Diplomatic)
- **Goal**: Achieve complete agreement
- **Style**: Bridge-building and diplomatic dialogue
- **Best for**: High-stakes decisions requiring buy-in
- **Output**: Unanimous agreement or identification of blocking issues
## 🌐 **Communication Structures**
### πŸ•ΈοΈ **Full Mesh** (Complete Collaboration)
- Every expert sees all other expert responses
- Maximum information sharing and cross-pollination
- Best for comprehensive analysis and complex decisions
- **Use when:** You want thorough multi-perspective analysis
### ⭐ **Star** (Hierarchical Analysis)
- Experts only see the lead analyst's responses
- Prevents groupthink, maintains independent thinking
- Good for getting diverse, uninfluenced perspectives
- **Use when:** You want fresh, independent expert takes
### πŸ”„ **Ring** (Sequential Analysis)
- Each expert only sees the previous expert's response
- Creates interesting chains of reasoning and idea evolution
- Can lead to surprising consensus emergence
- **Use when:** You want to see how ideas build and evolve
""")
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=10)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=True
)